

Presentation of the guidelines

Guidelines for Water Loss Reduction A Focus on Pressure Management

Table of contents

- Objectives of the guidelines
 - Components and structure of the guidelines
 - Target groups
 - Availability of the guidelines
 - Content of the guidelines

Objectives of the guidelines

Understanding water losses

Where? How?

Why?

How much?

Objectives of the guidelines

Reduced operational & capital costs

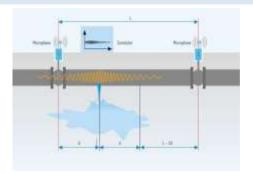
Increased service life of water distribution systems

Reduced health risks

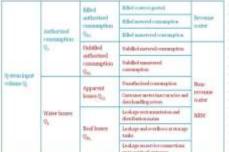
Understanding the need for water loss management

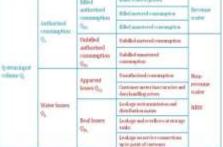
Increased security of supply

Improved customer satisfaction


Reduced ecologic stress

Less infrastructure damages & repair efforts

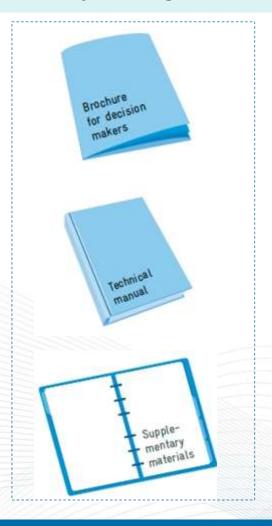



Objectives of the guidelines

Finding adequate solutions and methodologies

Components and structure of the guidelines

Components and structure of the guidelines

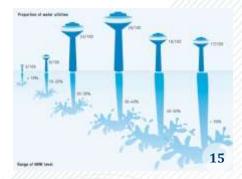


Target groups

Availability of the guidelines

As hardcopy (via GIZ) or download from the project website at www.waterlossreduction.com

Downloadable from the project website



Preface and Introduction

- GIZ-VAG public-private partnership (PPP)
- Objectives of the PPP
- Raise the awareness for the importance of WLR
- Highlight the benefits of NRW reduction
- Emphasise the outstanding potential of pressure management for reduction of real water losses
- Produce interest in participating actively in the PPP (pilot projects, trainings, multiplication, etc.)

- Definitions and terminology
- Key influencing factors
- Real losses
- Apparent losses
- Wastage

System input volume Q ₁	Authorised consumption Q _A	Billed authorised consumption Q _{BA}	Billed water exported	Revenue	
			Billed metered consumption		
			Billed unmetered consumption	77.00	
		Unbilled authorised consumption Q _{UA}	Unbilled metered consumption	Non-	
			Unbilled unmetered consumption		
	Water losses Q _L	Apparent losses Q _{AL}	Unauthorised consumption		
			Customer meter inaccuracies and data handling errors		
		Real losses	Leakage on transmission and distribution mains	NRW	
			Leakage and overflows at storage tanks		
		2003 M	Leakage on service connections up to point of customer	1	

Understanding water losses

- Definitions and terminology
- Key influencing factors
- Real losses
- Apparent losses
- Wastage

14

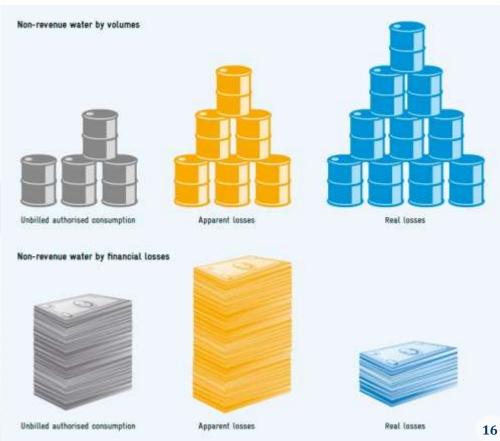
- Definitions and terminology
- Key influencing factors
- Real losses
- Apparent losses
- Wastage

- Definitions and terminology
- Key influencing factors
- Real losses
- Apparent losses
- Wastage

- Definitions and terminology
- Key influencing factors
- Real losses
- Apparent losses
- Wastage

- The need for water loss management
- Analysis of the present status
- Identification of appropriate measures
- Design and implementation of a water loss control programme

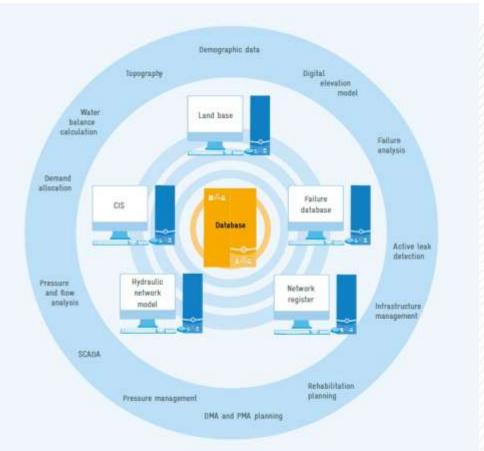
Extent of damages	Description	Potential of damages	
Catastrophic	Fatal casualties or permanent health problems	> 10 Mio. \$	
Critical	Injury to persons, infrastructure damages and interruptions of production, negative publicity	> 5 Mio. \$	
Significant	Interference of population and clients, local supply failures	> 1 Mio \$	
Minor	Short-term interference of supply and infrastructure, eventual media coverage	> 0.3 Mio \$	
Insignificant	Temporary interference of supply	> 0.1 Mio. \$	
Imperceptible	No direct interferences, limited local impacts	< 0.1 Mio. \$	



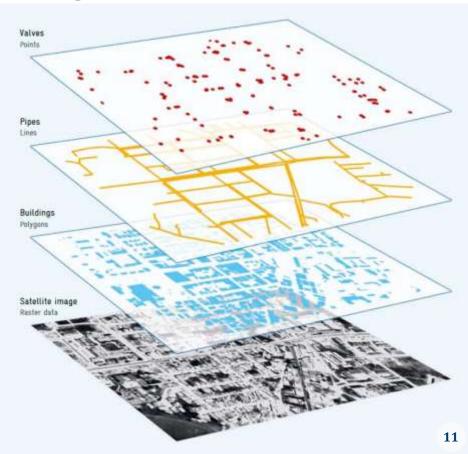
- The need for water loss management
- Analysis of the present status
- Identification of appropriate measures
- Design and implementation of a water loss control programme

	Data origin*	Volume [m³]	Accur	асу	Standard deviation o	Variance $V = \sigma^2$
System Input Q	(M)	1,996,139	± 1.0		10,184	103,721,650
Revenue Water Q _{RW}	(M)	1,801,146	± 0.2	\rightarrow	1,838	3,377,891
Non-Revenue Water Q _{NRW}	(D)	194,993	± 10.4	-	10,349	107,099,541
Unbilled authorised consumption Q _{UA}	(E)	30,000	± 20.0	→	3,061	9,371,095
Water losses Q _{ws.}	(D)	164,993	± 12.8	-	10,792	116,470,637
Apparent losses Q _{AL}	(E)	32,999	± 50.0	\rightarrow	8,418	70,862,896
Real losses Q _{III}	(D)	131,994	± 20.3	-	13,687	187,333,533

- The need for water loss management
- Analysis of the present status
- Identification of appropriate measures
- Design and implementation of a water loss control programme

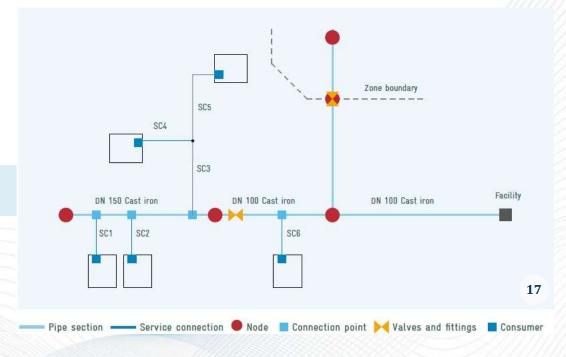


- The need for water loss management
- Analysis of the present status
- Identification of appropriate measures
- Design and implementation of a water loss control programme

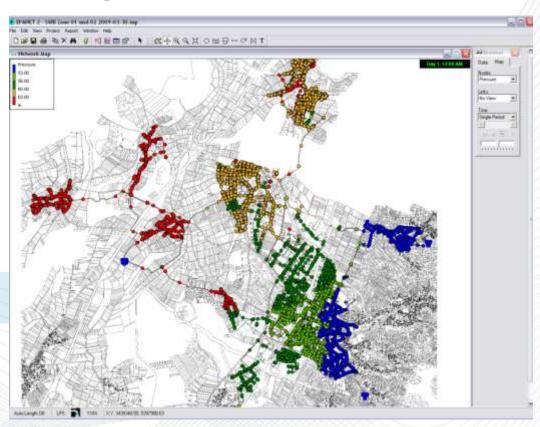


- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system

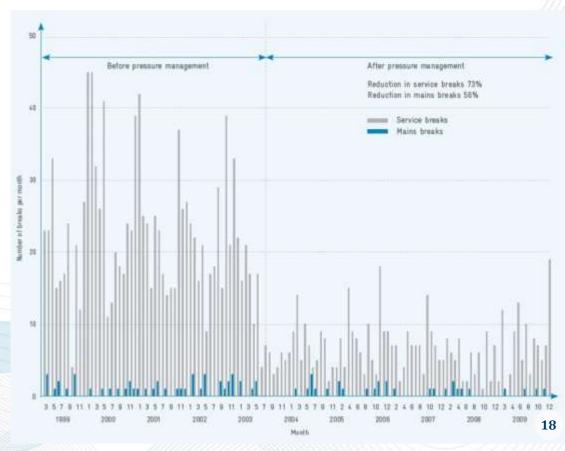
- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system



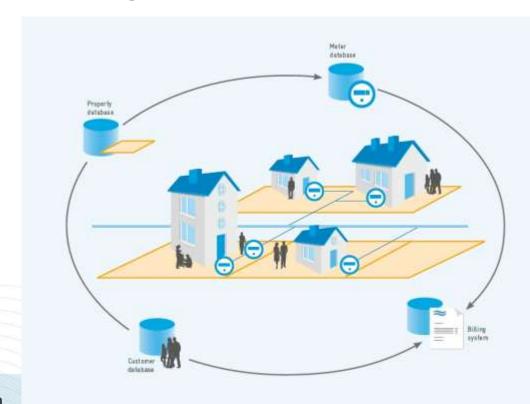
- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system



- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system

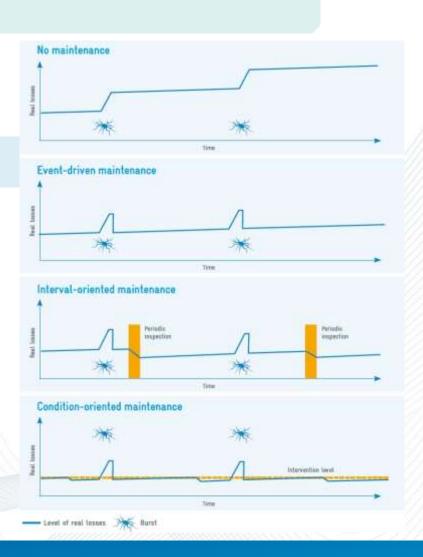


- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system

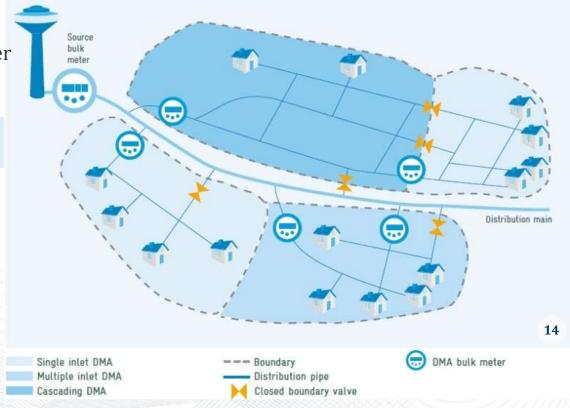

- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system

Basic prerequisites for sustainable NRW management

- Information systems and water loss management
- GIS basics
- Land base
- Network register
- Hydraulic network model
- Failure data base
- Customer information system

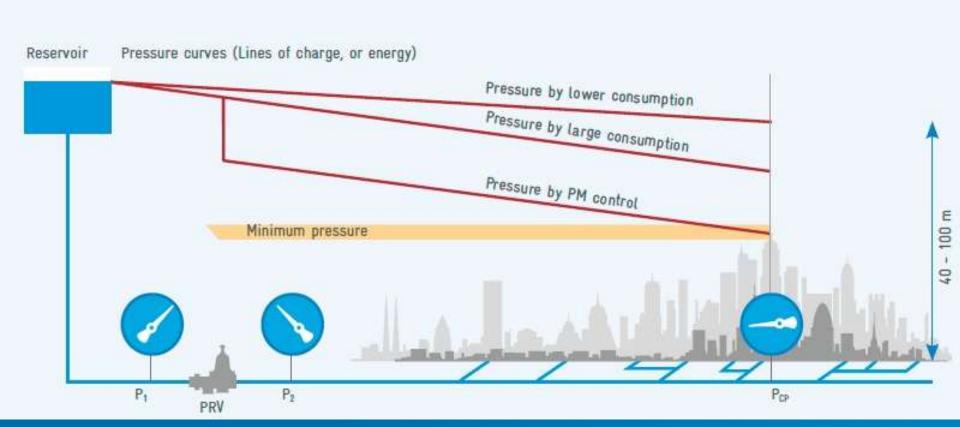


26

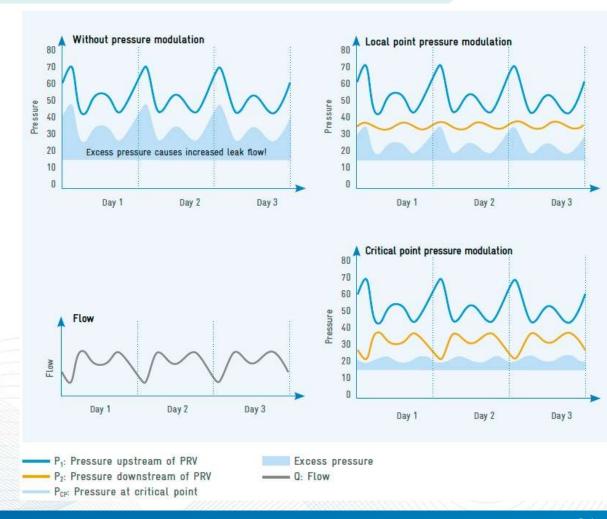


- Taking action against real water losses
- District metered areas (DMAs)
- Pressure management
- Active leakage control (ALC)
- Leak repair
- Infrastructure management

- Taking action against real water losses
- District metered areas (DMAs)
- Pressure management
- Active leakage control (ALC)
- Leak repair
- Infrastructure management

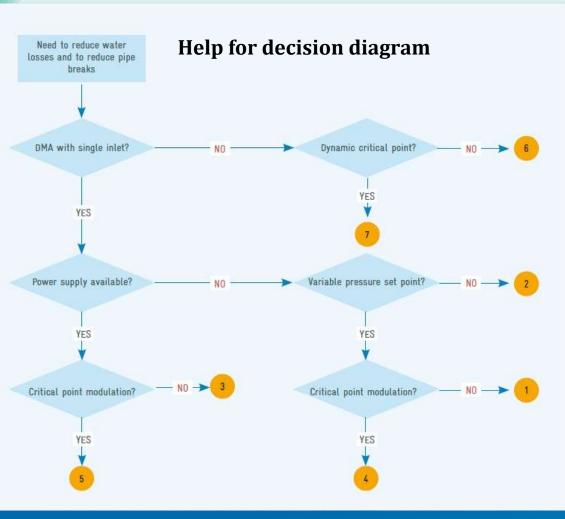


- Taking action against real water losses
- District metered areas (DMAs)
- Pressure management
- Active leakage control (ALC)
- Leak repair
- Infrastructure management

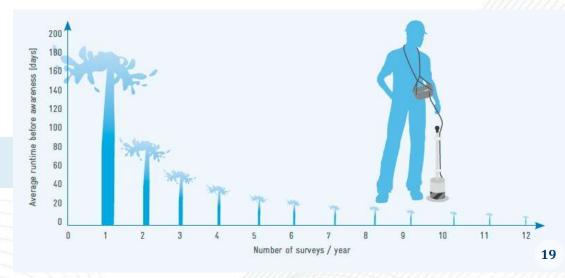


Simplified view of pressures within a distribution network

The different types of pressure modulation (simplified)

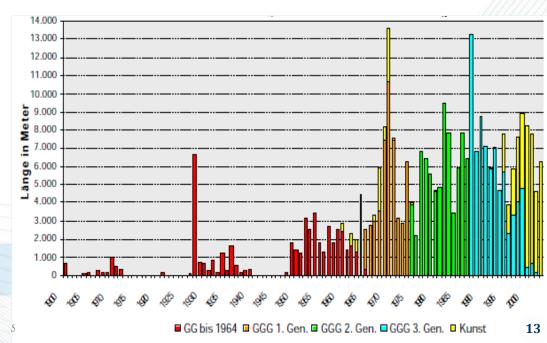


Classification of the different components for Pressure Reduction



- Local point modulation, diaphragm valve with fixed outlet pressure
- Local point modulation, diaphragm valve with time or flow modulation
- Local point modulation, plunger valve with time-based or flow-based modulation
- Critical point modulation, diaphragm valve with time-based or flow-based modulation
- Critical point modulation, plunger valve with time or flow modulation
- 6 Multiple Inlet
- 7 Multiple Inlet, Dynamic DMA

- Taking action against real water losses
- District metered areas (DMAs)
- Pressure management
- Active leakage control (ALC)
- Leak repair
- Infrastructure management



- Taking action against real water losses
- District metered areas (DMAs)
- Pressure management
- Active leakage control (ALC)
- Leak repair
- Infrastructure management

- Taking action against real water losses
- District metered areas (DMAs)
- Pressure management
- Active leakage control (ALC)
- Leak repair
- Infrastructure management

Case studies

- Pressure Management training modules
 The example of Lima, Peru
- Reducing water losses by pressure management
 The example of Santo Amaro, Brazil
- Hydraulic modelling
 The example of Ouagadougou, Burkina Faso
- Water losses reduced by up to 40%
 The example of Ain Al Basha, Jordan
- Reduction of apparent water losses
 The example of Huaraz, Peru

Thank you for your attention!

www.waterloss-reduction.com

info@waterlossreduction.com

Bibliography

- 1 A. Knobloch and P. Klingel, KIT, 2010.
- 2 VAG-Armaturen GmbH, 2010.
- 3 T. Diettrich, Gelsenwasser AG, 2010.
- 4 M. Brenner, KIT, 2010.
- 5 www.hessenwasser.de website, 2010.
- 6 www.zewe-gmbh.de website, 2010.
- 7 www2.tntech.edu website, 2010.
- 8 www.werner-schmid.de website, 2010.
- 9 www.diy-guides.com website, 2010.
- www. propertyslovenia.si website, 2010.
- webhelp.esri.com website, 2010.
- www.stadtwerke-karlsruhe.de website, 2010.
- 13 RBS Wave, 2010.
- 14 Farley, M. and Trow, S., Losses in Water Distribution Networks. IWA Publishing, 2003.
- Kingdom, B.. Liemberger, R. and Marin, P., The Challenge of Reducing Non-Revenue Water (NRW) in Developing Countries. World Bank, Washington, USA, 2006.
- Guibentif et al., Acceptable Level of Water Losses in Geneva. Proceedings of the IWA International Specialised Conference 'Water Loss 2007', Bucharest, Romania, 2007.
- DVGW. GAWANIS Datenmodell für die Dokumentation von Gas- und Wasserrohrnetzen. Deutsche Vereinigung des Gas- und Wasserfaches (DVGW), Bonn, Germany, 2000.
- May, J., Project Manager for Pressure and Leakage Management, Gold Coast Water, Australia. Personal communication, June 2010.
- Morrison, J., Tooms, S. and Rogers, D., District Metered Areas Guidance Notes. IWA Publishing, London, United Kingdom, 2007.