

Cartographie thématique des zones favorables aux techniques de captage et d'exhaure à faible coût

Sigles et acronymes

AEPA Adduction d'eau potable et d'assainissement

AEPG Approvisionnement en eau potable et assainissement

BDEA Base de données eau et assainissement

DSRP Document de stratégie de réduction de la pauvreté
DEPA Direction de l'eau potable et de l'assainissement

FTM Foiben-taosarintanin'i Madagasikara

MAP Madagascar Action Plan

MEM Ministère de l'énergie et des mines

OMD Objectifs du millénaire pour le développement

ONG Organisation non gouvernementale

PVC Polychlorure de vinyle

RWSN Rural Water and sanitation Network
SIG Système d'information géographique

SRTM Shuttle radio topography mission

UV Ultra violet

VLOM Village level operation maintenance

WASH Water sanitation hygiene

WATSAN Water and Sanitation

Table des matières

1. De	tail sommaire des termes de reference de l'étude	8
1.1.	Contexte	8
1.2.	Justifications	8
1.3.	Méthodologie	9
1.4.	Résultats attendus	9
2. Les	s technologies à faible coût	10
2.1.	Le Champ d'application des technologies	10
21	1 Les forages manuels : captage	10
212	2 Le pompage à motricité humaine : exhaure	11
2.2.	Les fiches techniques	12
3. Les	s cartes thématiques des zones favorables	19
3.1.	Les régions d'étude	19
3.2.	Les sources de données	19
3.3.	Conception des cartes thématiques	19
33	1 Carte de géologie simplifiée	21
332	2 Carte technique de forage manuel	25
333	Profondeur de pompage manuel	26
334	Carte technique de forage et de pompage manuel	26
33	5 Carte de détail	26
I	. Amoro I Mania	28
I	I. Haute Masiatra	33
İ	II. Antsinanana	39
İ	V. Analanjirofo	44
,	V. Alaotramangoro	49
,	VI. Vatovavy Fitovinany	54
,	VII. Anosy	60
,	VIII. Atsimo Andrefana	65
4. Es	timation de la population desservie	70
4.1.	Méthodologie	70
4.2.	Analyse des données	70
5. Es	timation du coût de mise à l'échelle	83
5.1.	Coût des technologies à faible coût	83
5.2.	Coût de mise à l'échelle	85
6. Re	commandations sur l'exploitation cartographique	87
6.1.	Incertitudes des données de base	87

611	Cartographie BD500	87
612	Table de données BD500	87
613	Taux d'accès aux équipement en infrastructures d'eau potable	87
6.2.	Fiabilité et limites des outils d'aide à la décision	88
621	Coût des technologies	88
622	Cartes thématiques	88
623	Estimation de la population potentiellement desservie	89
624	Estimation du coût de mise à l'échelle	89
6.3.	Paramètre non considéré dans l'étude	89

Tableaux

Tableau 1. Champ d'application méthodes de captage	10
Tableau 2. Champs d'application pompes à motricité humaine	11
Tableau 3. Source de données	19
Tableau 4. Classification et dénomination géologique	22
Tableau 5. Champs d'application méthode de forage	25
Tableau 6. Faisabilité forages manuels	25
Tableau 7. Champs d'application pompes à motricité humaine	26
Tableau 8. Champs d'application technologies confondues	26
Tableau 9. Taux comparés d'accès à l'eau potable	70
Tableau 10. Taux d'accès aux infrastructures d'eau potable	71
Tableau 11. Population potentiellement desservie par les technologies à faible coût	71
Tableau 12. Taux accès à l'eau potable avant et après aménagements à faible coût	72
Tableau 13.Répartition par district de la population potentiellement desservie	73
Tableau 14. Répartition par district du taux d'accès avant et après aménagements	74
Tableau 15. Coût d'infrastructures d'eau potable à faible coût	83
Tableau 16. Coût par habitant d'infrastructures d'eau potable à faible coût	83
Tableau 17. Coût moyen par habitant d'infrastructures d'eau potable à faible coût	83
Tableau 18. Coût total de mise à l'échelle	85
Tableau 19. Répartition par district du coût de mise à l'échelle	86
Fiches techniques	
FT 1 : FORAGE MANUEL A LA SOUPAPE ROTATIVE	13
FT 2 : FORAGE MANUEL AU LANÇAGE A L'EAU	14
FT 3 : FORAGE MANUEL MADRILL	15
FT 4 : POMPE CANZEE	16
FT 5 : ROPE PUMP ou POMPE A CORDE	17
FT 6 : ROPE PUMP ou POMPE A CORDE	18

Cartes

Carte 1. Régions d'étude	20
Carte 2. Zone Fianarantsoa	27
Carte 3. Géologie simplifiée	29
Carte 4. Forage manuel	30
Carte 5. Pompage à motricité humaine	31
Carte 6. Forage et pompe à motricité humaine technologies confondues	32
Carte 7. Géologie simplifiée	34
Carte 8. Forage manuel	35
Carte 9. Pompage à motricité humaine	36
Carte 10. Forage et pompe à motricité humaine technologies confondues	37
Carte 11. Zone Toamasina	38
Carte 12. Géologie simplifiée	40
Carte 13. Forage manuel	41
Carte 14. Pompage à motricité humaine	42
Carte 15. Forage et pompe à motricité humaine technologies confondues	43
Carte 16. Géologie simplifiée	45
Carte 17. Forage manuel	46
Carte 18. Pompage à motricité humaine	47
Carte 19. Forage et pompe à motricité humaine technologies confondues	48
Carte 20. Géologie simplifiée	50
Carte 21. Forage manuel	51
Carte 22. Pompage à motricité humaine	52
Carte 23. Forage et pompe à motricité humaine technologies confondues	53
Carte 24. Géologie simplifiée	55
Carte 25. Forage manuel	56
Carte 26. Pompage à motricité humaine	57
Carte 27. Forage et pompe à motricité humaine technologies confondues	58
Carte 28. Zone Toliara	59
Carte 29. Géologie simplifiée	61
Carte 30. Forage manuel	62
Carte 31. Pompage à motricité humaine	63
Carte 32. Forage et pompe à motricité humaine technologies confondues	64
Carte 33. Géologie simplifiée	66
Carte 34. Forage manuel	67
Carte 35. Pompage à motricité humaine	68

Carte 36. Forage et pompe à motricité humaine technologies confondues	69
Carte 37. Région Amaro I Mania : taux de population potentiellement desservi	75
Carte 38. Région Haute Masiatra : taux de population potentiellement desservi	76
Carte 39. Région Antsinanana : taux de population potentiellement desservi	77
Carte 40. Région Analanjirofo : taux de population potentiellement desservi	78
Carte 41. Région Alaotramangoro : taux de population potentiellement desservi	79
Carte 42. Région Vatovavy Fitovinany : taux de population potentiellement desservi	80
Carte 43. Région Anosy : taux de population potentiellement desservi	81
Carte 44. Région Atsimo Andrefana : taux de population potentiellement desservi	82

1. Détail sommaire des termes de référence de l'étude

1.1. Contexte

L'association Voahary Salama a été créée en Juillet 2000 comme étant un consortium de 12 partenaires ONG qui se sont engagés dans la stratégie de l'intégration des activités relatives au domaine de la Santé – Population – Environnement pour un développement durable avec comme objectif global la réduction de la pauvreté.

En Octobre 2007, Voahary Salama a obtenu un fonds de l'United States Agency for International Development (USAID) Madagascar pour mettre en oeuvre le projet « Renforcement de la planification familiale et augmentation de l'accès a l'eau potable et assainissement dans les zones rurales de Madagascar ».

Le renforcement de capacités des petits entrepreneurs locaux pour délivrer les produits et les services relatifs à l'augmentation de l'accès en eau potable est une composante clé du projet. La promotion des combinaisons de technologies multiples pour installer des forages manuels avec pompes à motricité humaine est essentielle dans cette approche.

1.2. Justifications

74% de la population malgache vit en dessous du seuil de pauvreté avec un faible taux d'accès aux infrastructures d'eau potable (31% rural et 38 % national) Conséquence de ce faible accès les maladies diarrhéiques viennent au troisième rang du classement des principales causes de morbidité et contribuent à la mortalité infanto juvénile : 50.9% des enfants de moins de 5 ans concernés.

Le Ministère de l'Energie et des Mines estime que le besoin financier pour atteindre les objectifs du Madagascar Action Plan (MAP) pour l'accès en eau potable est de 190 milliards d'Ariary (110 millions d'USD) par an jusqu'en 2012. Cette figure est plus de 4 fois le financement annuel actuel pour le secteur et le temps s'épuise rapidement pour attendre ces objectifs.

Dans cette optique il est impératif que le gouvernement et les partenaires financiers trouvent des nouvelles technologies pour réduire le coût d'exploitation par personne desservie. Notamment en zone rurale la plus fortement desservie, des techniques simples, à moindre coût, adaptées aux réalités locales (difficile d'accès) et permettant la réalisation rapide d'ouvrages peuvent constituer des alternatives efficaces.

Ces technologies existent à Madagascar à petite échelle: Rota sludge, well jetting, etc. Les expériences des projets pilotes utilisant ces technologies ont prouvé que l'accès en eau potable en milieu rural peut être augmenté considérablement en un temps très court.

1.3. Méthodologie

En janvier 2008, la Fondation Practica a publié les résultats d'une étude (financée par l'UNICEF) titrée : l'*Elaboration d'un plan d'action de développement de technologies a faible coût d'AEPA dans les régions SAVA, DIANA et SOFIA*. Dans ce rapport, Practica a effectué une cartographie avec technologie SIG pour estimer les zones favorables pour les techniques de pompage et forage à moindre coût selon la profondeur de la nappe phréatique :

- Définition de champs d'application et limites des technologies à faible coût
- Collecte, analyse et traitement des informations préalables à la cartographie : cartes géologiques, cartes BD500 (routes, délimitations communes, réseau hydrographique...), image radar simulant la topographie (SRTM), base de donnée eau et assainissement
- Analyse et traitement des données de la BDEA
- Analyse de la table de donnée des cartes géologiques et identification des géologies favorables aux technologies à faible coût. Elaboration de cartes géologiques simplifiées
- Modélisation de la profondeur d'application des techniques de forage et pompage en à partir des données SRTM et d'algorithmes de modélisation. Les algorithmes utilisés sont ajustés et calés pour chaque région à partir des informations issues de la BDEA (niveaux statiques). Cette modélisation permet de définir un zonage altimétrique.
- Superposition des couches d'informations SRTM, géologie, limites administratives, cours d'eau....
- Etablissement d'un protocole d'estimation de la population située en zone favorable aux technologies à faible coût à partir des tables de données de la BD500
- Estimation du coût de la mise à l'échelle par région pour atteindre le MAP

1.4. Résultats attendus

Au terme de l'étude, les résultats suivants seront attendus pour chaque région étudiée :

- ➤ Carte thématiques : géologie simplifiée ; technique de forage conseillée, technique de pompage à motricité humaine conseillée, forage équipé pompe à motricité humaine toutes technologies confondues
- ➤ Une estimation du nombre de population possible desservie par chaque technologie.
- ➤ Une estimation du coût de mise à l'échelle des technologies de forage et pompage à faible coût pour atteindre les objectifs du MAP.

2. Les technologies à faible coût

2.1. Le Champ d'application des technologies

Les technologies à faible coût sont identifiées comme étant des technologies ou procédés permettant de diminuer de manière conséquente le coût de réalisation d'un point d'eau comparativement à l'utilisation de procédés « conventionnels » plus coûteux.

De plus, ces technologies ou procédés utilisent des moyens appropriés, adaptés aux réalités locales (zones difficiles d'accès) et ayant un impact rapide sur le terrain

Le champ d'application d'une technologie définit les performances, les conditions et les limites d'utilisation de celle-ci.

211 Les forages manuels : captage

Les méthodes retenues sont exclusivement manuelles et pratiquées par un nombre réduit d'opérateurs privés nationaux : jetting, rota sludge et madrilling.

Tableau 1. Champ d'application méthodes de captage

Techniques	Profonde	eur en m	Diamètre max	Type de sel	Structure	0 - 04 A - 1 1	Equipement forage	Nombre	Durée	Nombre à
faible coût	maxi	optimal	en mm	Type de sol	du sol	Coût en Ariary	en Ariary	puisatiers	ouvrage ²	Madagascar
Jetting	15	7	75	sableux, alluvial	non consolidé	700 000 à 800 000	2 millions	3	1 jour	plus de 600
Rota sludge	35	30	125	sédimentaire et altérites du socle	consolidé	380 000 à 1,1 million	2,1 millions	5	3 à 8 jours	plus de 50
MaDrilling	3	30	110	sédimentaire et altérites du socle	consolidé	2,25 millions	2 millions	3	6 jours	plus de 50

hors aménagements de surface (dalle, puisard, clôture)

Les principales limites d'application de ces technologies sont :

- La profondeur limitée à 35 m
- La nature du sol qui doit être dépourvu de roche compacte

Les montants indiqués sont donnés à titre indicatifs (prix TTC) et peuvent variés en fonction du nombre d'ouvrages à réaliser et de la profondeur de l'ouvrage.

Ces informations ont été relevées en Juin 2008 auprès des professionnels mettant en œuvre ces méthodes de forage.

² réalisation : implantation, déploiement équipe, équipement forage standard DEA, développement forage, repli équipe

212 Le pompage à motricité humaine : exhaure

Les pompes retenues sont fabriquées localement par un nombre réduit d'opérateurs ou ateliers privés. Elles peuvent être réparées localement au niveau du village ou les compétences et pièces détachées peuvent être trouvées.

Une distinction est faite entre les pompes utilisées pour un usage communautaire et un usage familial. La différence réside dans le nombre d'utilisateurs conseillés utilisant au quotidien la pompe.

Tableau 2. Champs d'application pompes à motricité humaine

Techniques	Profonde	ır/débit maxi	Profondeu	r/débit optimal	Ø forage mini	Usagers	Coût sans	Nombre à
à faible coût	en m	litres/min ¹	en m	litres/min	en mm	conseillé	installation	Madagascar
	Utilisation communautaire							
Canzee	25	20	12	30	63	100	750 000 à 1,6 millions	600
Pompe à corde	30	17	25	15	-	150	1,2 à 1,3 millions	350
	Utilisation familiale							
Pompe à corde	35	10	25	20	100	50	350 000 à 380 000	plus de 10

Debit obtenu pour la profondeur maxi

Les montants indiqués sont donnés à titre indicatifs (prix TTC) et peuvent variés en fonction du nombre de pompes commandées et de la profondeur de pompage. Ces différentes pompes peuvent être également installées sur puits.

La principale limite d'utilisation de ces pompes est la profondeur, maximum 30 m.

2.2. Les fiches techniques

Les technologies et procédés sont présentés sous forme d'une fiche technique synthétique indiquant :

- L'origine de la technologie et les pays d'utilisation
- Les spécifications et performances de la technique
- L'utilisation recommandée et la maintenance
- Le coût indicatif des matériels et de réalisation : les prix sont TTC et peuvent varier de 20% selon la quantité
- Les opérateurs, fabricants et fournisseurs

Les informations recueillies ont été collectées et validées par les promoteurs des technologies.

La lecture des fiches techniques a pour objectif de renseigner son lecteur quelque soit sont niveau de connaissance technique sur la méthode ou l'équipement utilisé, <u>sur le coût approximatif</u> d'installation et d'indiquer le nom du promoteur (opérateur ou fournisseur).

A la fois outil de promotion et révérenciel technique ces fiches permettront à un porteur de projet, bailleur ou privé de mieux connaître et appréhender les technologies à faible coût ut.

FT 1: FORAGE MANUEL A LA SOUPAPE ROTATIVE Type rota sludge

Développé par

Practica Foundation

Pays d'utilisation

Inde plusieurs milliers de forages, Nicaragua, Tanzanie, Ghana, Ethiopie, Niger, Tchad, Mauritanie, Népal, Madagascar plus de 50 forages

Spécifications

Forage manuel
Diamètre 125 mm
Profondeur maxi 35 m, conseillée 30 m
Nombre de puisatiers 5
Temps de réalisation ouvrage 3 à 7 jours
Transportable en véhicule léger

Principe

La rotation avec un bras articulé et le mouvement vertical exercé par un levier sur le jeu de tiges au bout duquel est fixé un trépan permet la pénétration de sols consolidés dépourvus de roche. La circulation de boue créée par dépression à l'intérieur du jeu de tige, par un effet de soupape, entraîne l'évacuation des débris à la surface et maintien ouvert les parois du forage.

Utilisation recommandée

Réalisation de forages PVC pour le captage de nappes souterraines situées dans des sols consolidés et non consolidés du type sableux, alluvionnaires, sédimentaires et altérites magmatiques. Equipement léger adapté aux zones ayant un accès difficile. Méthode de forage manuel appropriée aux petites entreprises locales.

Coût indicatif des matériels de fonçage

Kit de complet pour 30 m de profondeur environ 2 à 2.4 millions d'Ariary

Coût indicatif de réalisation d'un forage

Tubage PVC 100 mm (épaisseur 3 mm) 10 m, de 560 000 Ariary 20 m, de 860 000 Ariary 30 m, de 1 100 000 Ariary

Opérateurs et utilisateurs

MEDAIR et petits entrepreneurs à Maroansetra, Entreprise VONJY et Direction de l'Eau Potable et de l'Assainissement à Antananarivo

FT 2 : FORAGE MANUEL AU LANÇAGE A L'EAU Type jetting ou washbore

Développé par

Richard Cansdale (UK)

Pays d'utilisation

Nigeria plus de 15 000 forages, Burkina Faso, Bénin, Sri Lanka, Ouganda, Kenya, Soudan, Madagascar plus de 600 forages

Spécifications

Forage manuel
Diamètre 63 mm
Profondeur maxi 15 m, conseillée 7 m
Nombre de puisatiers 3
Temps de réalisation ouvrage 1 jour
Transportable en véhicule léger

Principe

Une motopompe injecte de l'eau à l'intérieur du train de tiges. La pression de l'eau permet la pénétration dans le sol et la remontée des débris le long de la paroi du forage. Le tuyau PVC d'équipement est introduit dans le trou du forage de manière simultanée lorsque le train de tige a atteint la profondeur désirée.

Utilisation recommandée

Réalisation de forages PVC pour le captage de nappes souterraines peu profondes situées dans des sols non consolidés du type sableux, alluvionnaires. Equipement léger adapté aux zones ayant un accès difficile. La rapidité de réalisation est un atout majeur dans les situations d'urgence.

Coût indicatif des matériels de fonçage

Kit de complet pour 15 m de profondeur environ 2 millions d'Ariary

Coût indicatif de réalisation d'un forage

Tubage PVC 63 mm (épaisseur 3 mm) de 7 à 15 m, environ 700 000 à 1.6 millions Ariary

Opérateurs et utilisateurs

L'ONG internationale MEDAIR et la société Bush Proof à Antananarivo

FT 3 : FORAGE MANUEL MADRILL Type Rotary Manuel

Développé par

Bush Proof

Pays d'utilisation

Madagascar plus 50 forages réalisés

Spécifications

Forage manuel
Diamètre 110 mm
Profondeur maxi 30 m
Nombre de puisatiers 3 jours
Temps de réalisation ouvrage 6 jours
Transportable en véhicule léger

Principe

Une rotation et un mouvement vertical du train de tiges au bout duquel est fixé un trépan permettent la pénétration des sols consolidés. Dans un même temps une motopompe injecte de la boue à l'intérieur du train de tiges créant un courant ascendant le long des parois du forage qui ramène à la surface les débris. L'utilisation de la boue permet de maintenir ouvert les parois du forage.

Utilisation recommandée

Réalisation de forages PVC pour le captage de nappes souterraines situées dans des sols consolidés et non consolidés du type sableux, alluvionnaires, sédimentaires et altérites magmatiques. Equipement léger adapté aux zones ayant un accès difficile.

Coût indicatif des matériels de fonçage

Kit de complet pour 30 m de profondeur environ 2 millions d'Ariary

Coût indicatif de réalisation d'un forage

Tubage PVC 100 mm (épaisseur 3 mm) de 10 à 30 m de profondeur le coût est d'environ 2.3 millions Ariary A partir de 10 forages le prix est dégressif

Opérateurs et utilisateurs

Société Bush Proof à Antananarivo

FT 4: POMPE CANZEE

Développé par

Richard Cansdale

Pays d'utilisation

Kenya, Ouganda, Madagascar 800 pompes installées

Performances

Utilisation communautaire Nombre d'usagers conseillés 80 à 200 max

Profondeur maximale 25 m Profondeur optimale 15 m

Débit 30 litres/min à 12 m

Diamètre minimal de forage 63 mm

<u>Tête de pompe</u>
ABS et PVC anti UV
Poignée en bois

Axe métallique inoxydable

Commande et colonne
Poignée verticale
Pas de tringlerie
Refoulement PVC 40 mm

Corps de pompe PVC 50 mm évoluant dans une chemise PVC de 63 mm

Principe de fonctionnement

Pompe dépourvue de piston. Un tuyau PVC muni d'un clapet à sa base évolue de manière verticale dans un autre tuyau PVC fixe de diamètre légèrement inférieur (corps de pompe ou chemise) muni à sa base d'un clapet. La différence de diamètre entre les 2 tuyaux crée un joint hydraulique et une absence totale de frottements.

Maintenance

Réparation et maintenance facile, aucune pièce d'usure sensible. Pompe installée avec les villageois et livré avec kit de réparation

Prix indicatif

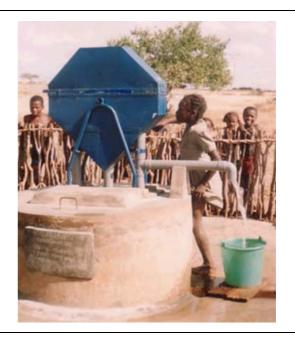
750 000 Ariary pour 12 m 1 600 000 Ariary pour 25 m contrat 100 000 Ariary/an pour réparation et maintenance proposé par Bush Proof

Fabricant et fournisseur

La pompe canzee est fabriquée à Antananarivo et diffusée par la société Bush Proof

FT 5 : ROPE PUMP ou POMPE A CORDE Type communautaire

Développé par


Taratra

Pays d'utilisation

Madagascar plus de 300 pompes installées

Performances

Utilisation communautaire
Nombre d'usagers conseillés 150
Profondeur maximale 30 m
Profondeur optimale 15 à 25 m
Débit 10 litres/ min à 30 m
18 litres/ min à 15 m

Tête de pompe

Protection en tôle, poignée métallique, roue en caoutchouc, fontaine en PVC

Commande et colonne

Commande par manivelle, transmission par corde, refoulement PVC 32 à 20 mm

Corps de pomp**e**

PVC de 32 à 20 mm, et pistons conique en polyéthylène de 15 à 25 mm

Principe de fonctionnement

Une roue actionnée par une manivelle met en mouvement plusieurs pistons, à intervalle 1 m, fixés sur une corde. Les pistons et la corde circulent librement lors de leur descente dans le forage ou puits. Arrivé au fond, lors du mouvement ascendant, ils sont guidés par un dispositif leur permettant d'évoluer à l'intérieur du tuyau PVC (chemise) de refoulement pour élever l'eau à la surface.

Maintenance

Graissage hebdomadaire et réparation très simple au niveau du village

Prix indicatif

- 1 200 000 Ariary pour 20 m
- 1 300 000 Ariary pour 30 m

Fabricant et fournisseur

La Rope pump est fabriquée à Betioky par l'atelier T+ et également diffusé par l'ONG Taratra

FT 6: ROPE PUMP ou POMPE A CORDE

Type familiale

Développé par

Practica et nombreuses autres organisations

Pays d'utilisation

Plus de 75 000 dans le monde dont 50 000 en Amérique centrale, Ethiopie, Sénégal, Niger, Tanzanie, début 2008 installation de 120 pompes dans l'Androy projet CRS/OFDA

Performances

Utilisation familiale et petite communauté Nombre d'usagers conseillés 50 Profondeur maximale 35 m Profondeur optimale 15 à 30 m Débit 10 litres/ min à 35 m 20 litres/ min à 20 m Diamètre minimal de forage 100 mm

Tête de pompe

Protection tôle, poignée métallique, roue en caoutchouc, fontaine PVC colonne PVC 20 à 40 mm

Commande et colonne

Commande par manivelle, transmission par corde,

Corps de pompe

PVC de 20 à 40 mm, pistons polyéthylène de 15 à 35 mm

Principe de fonctionnement

Une roue actionnée par une manivelle met en mouvement plusieurs pistons, à intervalle 1 m, fixés sur une corde. Les pistons et la corde circulent librement lors de leur descente dans le forage ou puits. Arrivé au fond, lors du mouvement ascendant, ils sont quidés par un dispositif leur permettant d'évoluer à l'intérieur du tuyau PVC (chemise) de refoulement pour élever l'eau à la surface.

Maintenance

Graissage hebdomadaire et réparation très simple au niveau du village

Prix

Prix attendu inférieur à 360 000 Ariary pour 30 mètres de profondeur

Fabricant et fournisseur

Fabrication et distribution à Antananarivo par l'atelier AFMA et ATEMAIN

3. Les cartes thématiques des zones favorables

3.1. Les régions d'étude

Ces régions correspondent aux 8 régions d'intervention de Voahary Salama. Pour une meilleure visualisation les régions sont regroupées en trois entités d'étude :

- Zone Toamasina : Analanjirofo, Alaotramangoro, Antsinanana
- ❖ Zone Fianarantsoa : Amoroi' Mania, Haute Matsiatra, Vatovavy Fitovinany,
- Zone Toliara : Anosy, Atsimo Andrefana

D'une manière générale les cartes font apparaître le découpage administratif des régions et des districts.

3.2. Les sources de données

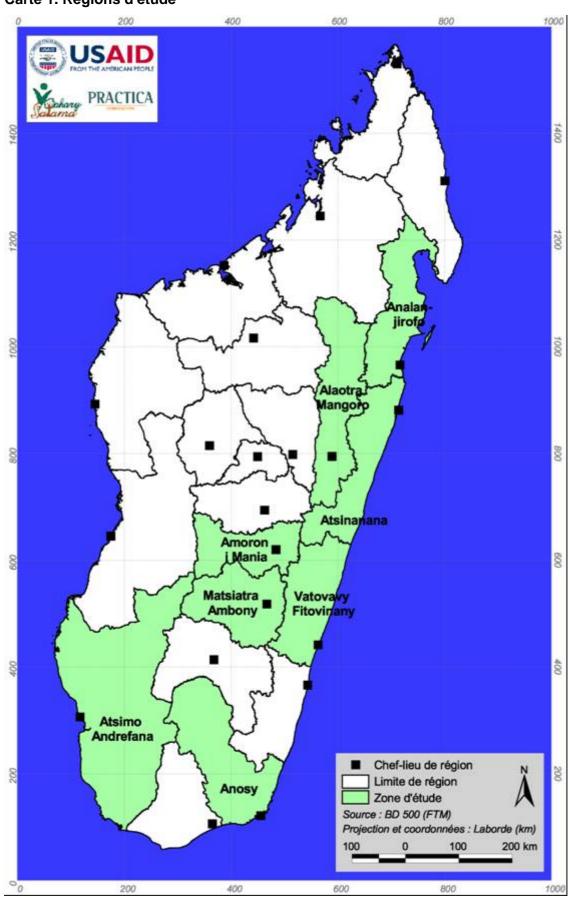
Les cartes ont été réalisées à partir de données sources variées, objet d'analyses et de modélisations.

Tableau 3. Source de données

Carte thématique	Source	Détail
Administrative	FTM	BD500
Géologie simplifiée	FTM, service géologie	BD500, Carte géologique 500 000e
Technique de forage	FTM, service géologie,DEPA	BD500, Image radar SRTM, Carte géologique 500 000e, BDEA
Profondeur de pompage manuel	FTM, service géologie,DEPA	BD500, Image radar SRTM, Carte géologique 500 000e, BDEA
Technique de forage et de pompage manuel	FTM, service géologie	BD500, Image radar SRTM, Carte géologique 500 000e
Estimation de la population desservie	FTM, service géologie	BD500, Image radar SRTM, Carte géologique 500 000e
Détaillée	FTM, service géologie	BD500, Image radar SRTM, Carte géologique 500 000e

3.3. Conception des cartes thématiques

6 cartes thématiques ont été réalisées par région à l'aide du logiciel Arc View.


- Géologie simplifiée
- Technique de forage manuel
- Profondeur de pompage manuel
- Technique de forage et de pompage manuel
- Estimation de la population desservie
- Carte détaillée

Un total de 48 cartes a été réalisé utilisant une légende uniforme.

La carte détaillée pour chaque région n'est pas incluse dans le rapport car de haute résolution et pour une consultation sur ordinateur ou pour une impression sur grand format (minimum A0).

Carte 1. Régions d'étude

331 Carte de géologie simplifiée

Les types de sols ont été classifiés en 4 catégories distinctes pour simplifier l'interprétation de la carte : le numéro ID indique le type de sol définit dans la base de donnée du service géologique.

- Sables blancs et dunes vives : quaternaire éolien, sables blanc, dune vives, anciennes et moyenne (N° ID 1)
- Alluvionnaire : quaternaire continental et fluviatile, pliocène continental fluviatile, lacustre et côtier (N° ID 3 et 11)
- Sédimentaire consolidé : de différentes origines (N° ID 2, 4, 9, 10, 11 12, 13, 14, 15, 16, 25, 26, 27, 28, 29, 30, 31, 32, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 57, 58, 59, 60)
- Magmatique et potentiellement altéré : de différentes origines (N° ID 6, 7, 8, 17, 18, 19, 20, 21, 22, 23, 33, 34, 35, 36, 37, 38, 39, 61, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 100, 102, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 119, 121, 123, 124, 125, 126, 127, 128, 129)

Cette carte apporte des informations à deux niveaux :

- Elle permet d'évaluer la dureté des couches de sols rencontrées :
 - Sables blancs et alluvionnaires : structure non consolidée
 - Sédimentaire : éléments consolidés mais de nature friable selon le niveau de cimentation des éléments plus gros
 - Magmatique et potentiellement altéré : d'origine du socle ou volcanique les roches sont plus ou moins altérées donc friables et potentiellement traversables par des techniques manuelles. La présence en profondeur de roche ou d'affleurement compact de granite et de basalte n'est pas exclue dans cette classification
- ❖ La nature des sols nous renseigne également sur l'hydrogéologie attendue :
 - Sables blancs : nappe de faible profondeur de 5 à 10 m
 - Alluvionnaires : nappe de faible profondeur de 5 à 20 m
 - Sédimentaire : nappe greso-sableuse et surface des bassins sédimentaires souvent recouverte de matériaux remaniés (carapace sableuse)
 - Magmatique et potentiellement altéré : Les nappes de socle et des altérites sont importantes puisqu'elles permettent le maintien des débits d'étiage des rivières en saison sèche et qu'elles (particulièrement la nappe des altérites) contribuent à l'irrigation des rizières de bas-fond

Ces différentes classifications et informations issues de la géologie ont permis de déterminer le niveau de faisabilité des méthodes de forages manuels.

Tableau 4. Classification et dénomination géologique

Ident	Faisabilité	Formation	Titre	Légende
6	Favorable si altéré	Magmatique	Basaltes, Ankaratrites, Quaternaire	Qv - Volcanisme et Plutonisme quaternaire & plio-quaternaire
7	Favorable si altéré	Magmatique	Basanites & basanitoïdes, Quaternaire (Itasy, Antsirabe)	Qv - Volcanisme et Plutonisme quaternaire & plio-quaternaire
8	Favorable si altéré	Magmatique	Rhyolites, Quaternaire (Nosy Be)	Qv - Volcanisme et Plutonisme quaternaire & plio-quaternaire
17	Favorable si altéré	Magmatique	Basaltes (Massif d'Ambre, Bobaomby), Miocène sup. à Quaternaire	Qv - Volcanisme et Plutonisme quaternaire & plio-quaternaire
18	Favorable si altéré	Magmatique	Basaltes sup. (Ankaratra,Takarindiona, Alaotra, Ankaizina, Tsianihy), Néogène	VIII - Volcano-plutonisme Néogène-Paléogène
19	Favorable si altéré	Magmatique	Trachytes (Nosy Mitsio, Nosy Lava, Nosy Valiha, Ambodrona, Ampasindava), Miocène sup., & Eocène	VIII - Volcano-plutonisme Néogène-Paléogène
20		Magmatique	Ignimbrites (Massif d'Ambre), Oligocène	VIII - Volcano-plutonisme Néogène-Paléogène
21		Magmatique	Complexes ultrabasiques et gabbroiques, Eocène-Oligocène	VIII - Volcano-plutonisme Néogène-Paléogène
22			Granite (Ampasindava), Eocène	VIII - Volcano-plutonisme Néogène-Paléogène
23	Favorable si altéré	Magmatique	Syénite & syénite néphélinique, (Ampasindava), Eocène	VIII - Volcano-plutonisme Néogène-Paléogène
33	Favorable si altéré		Massifs volcano-plutoniques basiques ("Basaltes sup et moyens", Androy), K2	KJv - Volcanisme & volcano-plutonisme, Jurassique-Crétacé
34	Favorable si altéré	Magmatique	Massifs volcano-plutoniques basiques, Crétacé sup. basal (Turonien)	KJv - Volcanisme & volcano-plutonisme, Jurassique-Crétacé
35			Massifs volcano-plutoniques acides (Androy), Crétacé sup. sommital (Campanien)	KJv - Volcanisme & volcano-plutonisme, Jurassique-Crétacé
36	Favorable si altéré	Magmatique	Massifs volcano-plutoniques acides (Vohemar, Maningoza), Crétacé sup. basal (Turonien)	KJv - Volcanisme & volcano-plutonisme, Jurassique-Crétacé
37	Favorable si altéré	Magmatique	Complexe "gréso-basaltique", K1-2	K - Crétacé sédimentaire indifférencié
38	Favorable si altéré		Massifs ultrabasiques et basiques (Ambatovy, Ankilizato, Manama, Analalava), Crétacé	KJv - Volcanisme & volcano-plutonisme, Jurassique-Crétacé
39	Favorable si altéré	Magmatique	Syénites (Ambatovy, Manama, Analalava), Crétacé (Santonien, Turonien, Sénonien)	KJv - Volcanisme & volcano-plutonisme, Jurassique-Crétacé
61	Favorable si altéré	Magmatique	Granites et charnockites anosyens, NP3	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
65	Favorable si altéré		Complexes de gneiss, quartzites et migmatites (Vohibory, Amborompotsy, Ikalamavony), à reliques MP	MNPtm - "Ceinture mobile" Mésoprotérozoïque à Néoprotérozoïque, à complexes tectono-métamorphiques
66	Favorable si altéré	Magmatique	Complexe de gneiss et micaschiste à quartzite, amphibolites et cipolins	NPtm - "Ceinture mobile" du Néoprotérozoïque à complexes métamorphiques, anatectiques & plutoniques
67	Favorable si altéré	Magmatique	Complexes gneissiques (Vohibory, Andriba)	NAgn - Complexes gneissiques et anatectiques, Néoarchéen (à Mésoarchéen ?)
68	Favorable si altéré		Massifs de granites "stratoïdes" (Vohibory, Beforona, Androna, Alaotra, Andriamena), NP2-3p	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
69	Favorable si altéré		Complexe d'orthogneiss granodioritiques (Ambohipato, Bemarivo), NP2	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
70	Favorable si altéré	Magmatique	Complexe de paragneiss, micaschiste et méta-volcanites acides et basiques	NPsvs - Néoprotérozoïque 2-3 sédimentaire à volcano-sédimentaire ("marge active")
71	Favorable si altéré		Complexes de gneiss à intercalations de cipolins et amphibolites	MNPtm - "Ceinture mobile" Mésoprotérozoïque à Néoprotérozoïque, à complexes tectono-métamorphiques
72			Migmatites (Vohibory, Maevatanana), NA	NAp - Plutonisme & complexes granito-gneissiques, Néoarchéen
73			Gneiss à amphiboles (Vohibory, Maevatanana), NA	NAp - Plutonisme & complexes granito-gneissiques, Néoarchéen
74	Favorable si altéré		Complexe de gneiss et micaschistes à quartzites (Vohibory, Maevatanana), NA	NA - Néoarchéen volcano-sédimentaire ("Ceintures de roches vertes") & plutonisme associé
75	Favorable si altéré		Complexe de gneiss et leptynites à amphibolites et cipolins (Vohibory)	NAgn - Complexes gneissiques et anatectiques, Néoarchéen (à Mésoarchéen ?)
76	Favorable si altéré		Complexe de gneiss et "migmatites" à niveaux de graphite du Système du "Graphite"	NP1-2p - Plutonisme, volcano-plutonisme & "Dolérites", Néoprotérozoïque 1-2
77	Favorable si altéré		Complexe de gneiss, leptynite et "migmatites" à niveaux de à graphite du Système du "Graphite"	NAgn - Complexes gneissiques et anatectiques, Néoarchéen (à Mésoarchéen ?)
78			Complexe de gneiss, micaschistes et quartzites du Système du "Graphite"	NAgn - Complexes gneissiques et anatectiques, Néoarchéen (à Mésoarchéen ?)
79	Favorable si altéré		Complexe de gneiss, micaschistes à niveaux de graphite du Système du "Graphite"	NAgn - Complexes gneissiques et anatectiques, Néoarchéen (à Mésoarchéen ?)
80	Favorable si altéré		Complexe de gneiss et migmatites du Système du "Graphite"	NAgn - Complexes gneissiques et anatectiques, Néoarchéen (à Mésoarchéen ?)
81			Complexe de gneiss, charnockites et migmatites du Système du "Graphite"	NAp - Plutonisme & complexes granito-gneissiques, Néoarchéen
82			Complexe de leptynites à graphite du Système du "Graphite"	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
83			Complexe de gneiss & BIF du Système du "Graphite" (NAPP1bif - Formations à B.I.F. (Fe-Mn) du Néoarchéen-Paléoprotérozoïque
84			Oligoclasites quartzitiques, "Infra-Graphite"	MANAp - Plutonisme & volcano-plutonisme, Mésoarchéen-Néoarchéen
85	Favorable si altéré	Magmatique	Complexes gneissiques (Ambodiriana, Antenina), "Infra-Graphite"	MAgn - Complexes gneissiques et anatectiques Mésoarchéen

Suite classification géologique

Ident	Faisabilité	Formation	Titre	Légende
86	Favorable si altéré	Magmatique	Micaschistes à disthéne (Ambodiriana, Vavatenina), "Infra-Graphite"	MANAgl - Mésoarchéen-Néoarchéen sédimentaire à dépôts glaciaires
87	Favorable si altéré	Magmatique	Complexes de schistes et chloritoschistes (Maha), "Infra-Graphite"	MANAgl - Mésoarchéen-Néoarchéen sédimentaire à dépôts glaciaires
88	Favorable si altéré	Magmatique	Amphibolites (Nosilovo), "Infra-Graphite"	MANAp - Plutonisme & volcano-plutonisme, Mésoarchéen-Néoarchéen
89	Favorable si altéré	Magmatique	Gneiss (lantsisitra-lhosy, Fort-Dauphin), "Androyen"	MNPtm - "Ceinture mobile" Mésoprotérozoïque à Néoprotérozoïque, à complexes tectono-métamorphiques
90	Favorable si altéré	Magmatique	Paragneiss et leptynites (Fort-Dauphin, "Androyen")	PP(MP)s - Paléoprotérozoïque (à Mésoprotérozoïque ?) sédimentaire (e.g. Madagascar)
91	Favorable si altéré	Magmatique	Leptynites à grenat (Ampandrandava, Horombe, "Androyen")	NPtm - "Ceinture mobile" du Néoprotérozoïque à complexes métamorphiques, anatectiques & plutoniques
92			Leptynites à sillimanite et grenat, pyroxénites et quartzites	NPtm - "Ceinture mobile" du Néoprotérozoïque à complexes métamorphiques, anatectiques & plutoniques
93			Ortho-leptynites, amphibolites et pyroxénites	NPtm - "Ceinture mobile" du Néoprotérozoïque à complexes métamorphiques, anatectiques & plutoniques
94	Favorable si altéré	Magmatique	Complexe de méta-basites, gneiss, leptynites à cipolins et quartzites	MNPtm - "Ceinture mobile" Mésoprotérozoïque à Néoprotérozoïque, à complexes tectono-métamorphiques
95	Favorable si altéré	Magmatique	Orthogneiss plagioclasiques	MANAp - Plutonisme & volcano-plutonisme, Mésoarchéen-Néoarchéen
96	Favorable si altéré	Magmatique	Granites leucocrates, granites monzonitiques et granodiorites	MANAp - Plutonisme & volcano-plutonisme, Mésoarchéen-Néoarchéen
97			Migmatites (Mananara, "Antongil")	MANAp - Plutonisme & volcano-plutonisme, Mésoarchéen-Néoarchéen
100	Favorable si altéré			
102			Ectinites résiduelles (in Bloc d'Antongil)	MANAp - Plutonisme & volcano-plutonisme, Mésoarchéen-Néoarchéen
105	Favorable si altéré			
108	Favorable si altéré			
109				
110			Charnockites syénitiques	NPEct - Carbonatites & syénites, Néoprotérozoïque 2 à Cambrien
111			Diorites quartziques (Maevatanana)	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
112	Favorable si altéré			NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
113			Gabbros de l'Itsindro, recoupent (?) ou sont recouverts (?) par le SQD	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
114	Favorable si altéré			NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
			Granites à deux micas	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
			Granites andringitréens	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
			Granites des Vavato	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
	Favorable si altéré			NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
121			Granites de type Ikala	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
123			Syénites, syénites à pyroxénes de l'Andringitra et syénites néphéliniques	NPEct - Carbonatites & syénites, Néoprotérozoïque 2 à Cambrien
124			Massifs ultrabasiques-basiques	NAp - Plutonisme & complexes granito-gneissiques, Néoarchéen
125	Favorable si altéré			NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
126			Dykes de gabbros, ortho-amphibolites et orthopyroxénites	NP1-2p - Plutonisme, volcano-plutonisme & "Dolérites", Néoprotérozoïque 1-2
127			Granites migmatitiques	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
			Migmatites & gneiss oeillés	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3
129	Favorable si altéré	Magmatique	Orthoamphibolites	NP2-3p - Plutonisme-volcanoplutonisme & complexes & métamorphiques Néoprotérozoïque 2-3

Suite classification géologique

Ident	Faisabilité	Formation Titre	Légende
5	Non favorable	Sédimentaire Quaternaire marin à lumachelles	Qm - Quaternaire sédimentaire marin
12	Non favorable	Sédimentaire Pliocène marin cotier (mangrove)	PNm - Paléogène-Néogène sédimentaire marin
14	Non favorable	Sédimentaire Calcaires & marnes, intercalation de trachytes , Oligocène-Eocène sup. marin, lagunaire saumatre	PNm - Paléogène-Néogène sédimentaire marin
15	Non favorable	Sédimentaire Grés quartziques,calcaires oolithiques silicifiés, dolomies &tufs basaltiques	PNm - Paléogène-Néogène sédimentaire marin
16	Non favorable	Sédimentaire Dolomies, calcaires marins & grès à Alvéolines, Paléocène	PNm - Paléogène-Néogène sédimentaire marin
25	Non favorable	Sédimentaire Formations carbonatées & phosphatées marines de la transition Crétacé-Paléocène	PNm - Paléogène-Néogène sédimentaire marin
26	Non favorable	Sédimentaire Formations gréso-carbonatées marines (N& S Maintirano, Antsoha)	K2m - Crétacé supérieur sédimentaire marin
28	Non favorable	Sédimentaire Formations détritiques marines (dominantes) à continentales , K2	K2m - Crétacé supérieur sédimentaire marin
30	Non favorable	Sédimentaire Formations détritiques-carbonatées marines, K2 moyen	K2m - Crétacé supérieur sédimentaire marin
31	Non favorable	Sédimentaire Formations détritiques-carbonatées marines à lagunaire à passées continentales	K2m - Crétacé supérieur sédimentaire marin
46	Non favorable	Sédimentaire Formations détritiques-carbonatées marines à intercalations lagunaires , transition Jurassique-Crétacé	J3 - Jurassique supérieur sédimentaire
47	Non favorable	Sédimentaire Formations détritiques-carbonatées marines à passées sommitales continentales, Jurassique sup.	J3 - Jurassique supérieur sédimentaire
48	Non favorable	Sédimentaire Formations détritiques-carbonatées marines, saumatres à passées continentales, Jurassique supérieur & moye	J3 - Jurassique supérieur sédimentaire
49	Non favorable	Sédimentaire Formations détritiques-carbonatées marines & continentales , Jurassique moyen	J2 - Jurassique moyen sédimentaire
50	Non favorable	Sédimentaire Formations détritiques-carbonatées marines & continentales, Jurassique inférieur à moyen	J1 - Jurassique inférieur sédimentaire
51	Non favorable	Sédimentaire Formations détritiques-carbonatées marines à passées continentales , Jurassique inférieur	J1 - Jurassique inférieur sédimentaire
55	Non favorable		RT - Permo-Trias sédimentaire à Jurassique inférieur en Afrique australe
58	Non favorable		R - Permien sédimentaire indifférencié
60	Non favorable		D - Dévonien sédimentaire indifférencié continental ou marin
1	Très favorable	Sable Quaternaire éolien à supralittoral (Karimbolien); sables blancs & dunes vives, anciennes, moyennes	Qc - Quaternaire & Plio-quaternaire sédimentaire continental
2	Très favorable	Sédimentaire Quaternaire Continental (Tatsimien, Karimbolien)	Qc - Quaternaire & Plio-quaternaire sédimentaire continental
3	Très favorable		Qm - Quaternaire sédimentaire marin
4	Très favorable	Sédimentaire Quaternaire lacustre	Qs - Quaternaire sédimentaire lacustre
9	Très favorable	Sédimentaire Altérites continentales, Plio-quaternaire	Qc - Quaternaire & Plio-quaternaire sédimentaire continental
10	Très favorable	Sédimentaire Alluvions anciennes, Plio-quaternaire continental	Qc - Quaternaire & Plio-quaternaire sédimentaire continental
11	Très favorable	Alluvionnaire Pliocène continental, fluviatile, lacustre, cotier	PNc - Paléogène-Néogène sédimentaire continental
13	Très favorable	Sédimentaire Sédiments détritiques - carbonatés à intercalations de tufs basaltiques, Miocéne inf.	PNm - Paléogène-Néogène sédimentaire marin
27	Très favorable	Sédimentaire Formations détritiques-carbonatées lagunaires, continentales, à passées marines	K2 - Crétacé supérieur sédimentaire
29	Très favorable	Sédimentaire Formations détritiques-carbonatées continentales (Marovoay, Antonibe, Maevarano), K2	K2c - Crétacé supérieur sédimentaire continental
32	Très favorable	Sédimentaire Formations détritiques marines & continentales (Ankarafantsika), K1-2	K - Crétacé sédimentaire indifférencié
40	Très favorable		K - Crétacé sédimentaire indifférencié
41	Très favorable		K - Crétacé sédimentaire indifférencié
42	Très favorable		K1sup - Aptien-Albien inférieur sédimentaire marin
43	Très favorable	Sédimentaire Formations détritiques continentales (N & S Mahajamba, Saharena, Sitampiky), K1	K1c - Crétacé inférieur sédimentaire continental
44	Très favorable		K1sup - Aptien-Albien inférieur sédimentaire marin
45	Très favorable	Sédimentaire Formations détritiques-carbonatées marines à passées continentales	K1 - Crétacé inférieur sédimentaire
52	Très favorable	Sédimentaire Formations détritiques-carbonatées continentales à passées marines ou lagunaires, Jurassique moyen	J2 - Jurassique moyen sédimentaire
53	Très favorable	Sédimentaire Formations détritiques-carbonatées continentales , Jurassique	J - Jurassique sédimentaire
54	Très favorable	Sédimentaire Formations détritiques continentales (Karroo, Isalo), Jurassique inf(Rhétien)	J1 - Jurassique inférieur sédimentaire
56	Très favorable	3	RTh - Permo-Trias sédimentaire "houiller"
57	Très favorable	Sédimentaire Argiles & grès marins, Trias	Tc - Trias sédimentaire
59	Très favorable	Sédimentaire Formations gréso-argileuses marines (Ankitokazo, Andavakoera), Permien	R - Permien sédimentaire indifférencié

332 Carte technique de forage manuel

Cette carte est réalisée à partir de plusieurs couches d'informations

- La classification géologique simplifiée qui définie le champ d'application de chaque méthode de forage limitée par la structure des sols rencontrée
- La profondeur optimale d'application de chaque méthode. Cette profondeur fait appel à une modélisation à partir d'images radar SRTM (Shuttle Radar Topography Mission) et d'une application d'algorithmes visant à obtenir un zonage altimétrique.

Tableau 5. Champs d'application méthode de forage

Méthode	Type de sol	Profondeur conseillée
Jetting	Sable blanc et dunes vives, alluvionnaire	0 à 7 m
Rota sludge	+Sédimentaire consolidé, magmatique altéré	0 à 30 m
Madrilling	+Sédimentaire consolidé, magmatique altéré	0 à 30 m

L'annotation « + » dans le champs type de sol indique que par défaut ces techniques s'appliquent également aux sols constitués de sables et d'alluvions.

Dans le cas des sols d'origine magmatique il est impossible à partir des données existantes de définir si on se trouve dans des couches altérées favorables ou des couches compactes non favorables. Une visite de terrain et la réalisation de forages test permettront de valider la faisabilité.

Tableau 6. Faisabilité forages manuels

Type de sol	Faisabilité	
Sables blancs et dunes vives	Très favorable	
Alluvionnaire	Très favorable	
Sédimentaire consolidé	Très favorable	
Magmatique	Favorable si altéré	
Sédiments marins	Non favorable	

Cette carte définie les zones de faisabilité des différentes techniques de forage manuel et non les profondeurs modélisées d'aquifère!

Le district de Betroka (région Anosy) est indiqué comme étant favorable à la technique de forage manuel, bien que cette zone soit caractérisée en grande partie par des sols durs et compacts d'origine magmatique mais non altéré nécessitant l'utilisation de la technique de marteau fond de trou. Cet exemple démontre la limite de la méthodologie de mapping qui ne nous permet pas à partir des données géologiques existantes d'être plus précis dans les investigations et nécessitant une confirmation sur terrain. Le cas de Betroka semble être le plus discordant dans les résultats obtenus sur l'ensemble des régions d'étude.

333 Profondeur de pompage manuel

La profondeur de pompage est modélisée à partir d'images radar SRTM (Shuttle Radar Topography Mission) et d'une application d'algorithmes visant à obtenir un zonage altimétrique de la profondeur potentielle de la nappe. Un calage de cette profondeur est réalisé à partir des relevés du niveau statique (BDEA) des nappes dans la région d'étude.

La carte représente des gammes de profondeur à partir desquelles peut s'effectuer le choix du type de pompe ; à faible coût ou conventionnel.

Tableau 7. Champs d'application pompes à motricité humaine

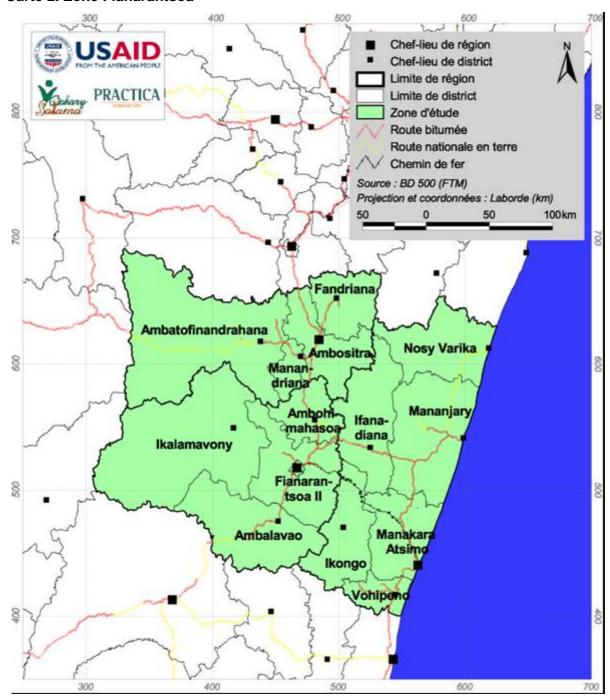
Profondeur	Pompes à faible coût	
0 à 7 m	Canzee, pompe à corde (commu.et familiale)	
7 à 15 m		
15 à 25 m	Pompe à corde (communautaire et familiale)	
25 à 35 m		

Le champ d'application des pompes à faible coût se retrouve dans la gamme de profondeur modélisée sur la carte.

Carte technique de forage et de pompage manuel

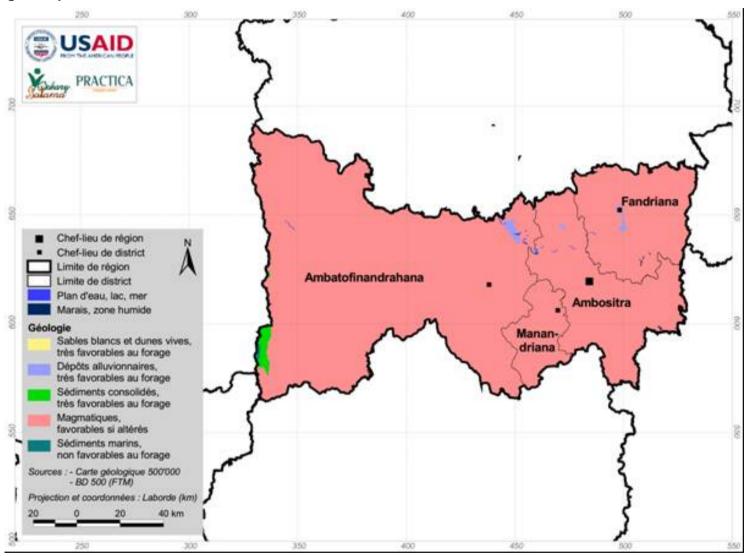
La comparaison des coûts et les limites des technologies utilisées permettent de déterminer toutes technologies confondues les zones les plus favorables ayant un taux de réussite optimum pour la réalisation de forages équipés de pompes à motricité humaine à faible coût.

Tableau 8. Champs d'application technologies confondues

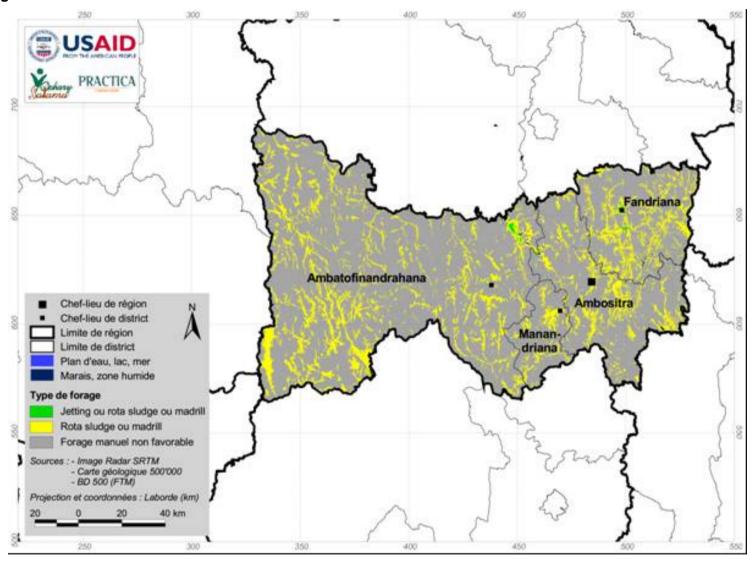

Profondeur	Geologie	Forage	Pompage
0 à 7 m	Sable blanc/dunes vives, alluvionnaire	Jetting ou rota sludge ou madrill	Canzon ou rong communautairo
0 a 7 III	Toutes les classes, sauf non favorables		/ familial
7 à 15 m	Toutes les classes, sauf non favorables	Rota sludge ou madrill	/ laililliai
15 à 25 m	Toutes les classes, sauf non favorables		Rope communautaire / familial

335 Carte de détail

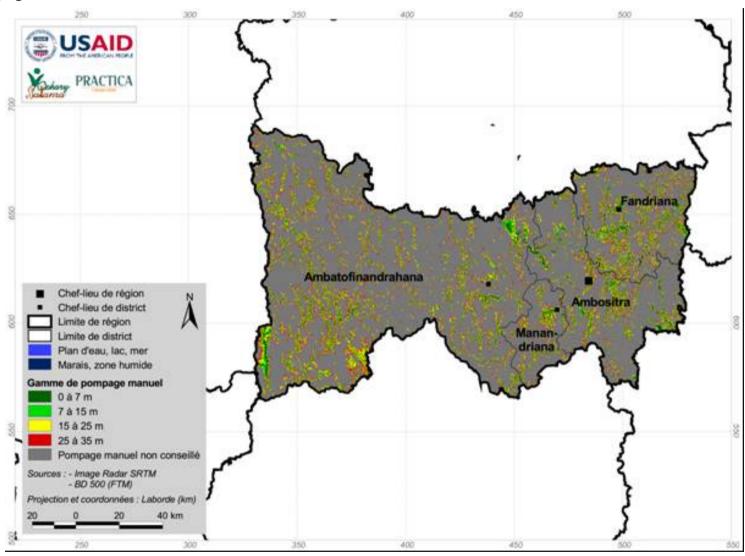
Cette carte permet de visualiser à l'échelle de la commune, mentionnant routes, pistes, limites administratives, cours d'eau, le zonage favorable aux technologies de l'eau à faible coût.

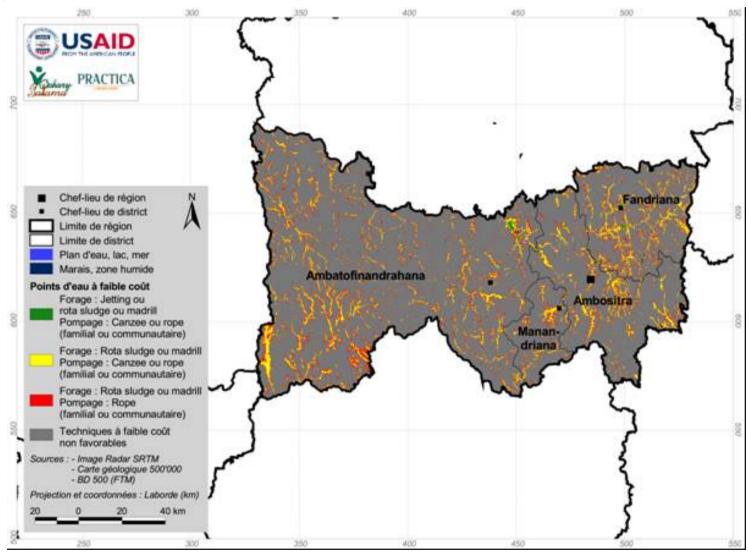

En raison de la haute définition nécessaire à la lisibilité et interprétation de cette carte celle-ci ne peut être consulté que sur ordinateur ou après impression partielle sous format A0.

Carte 2. Zone Fianarantsoa

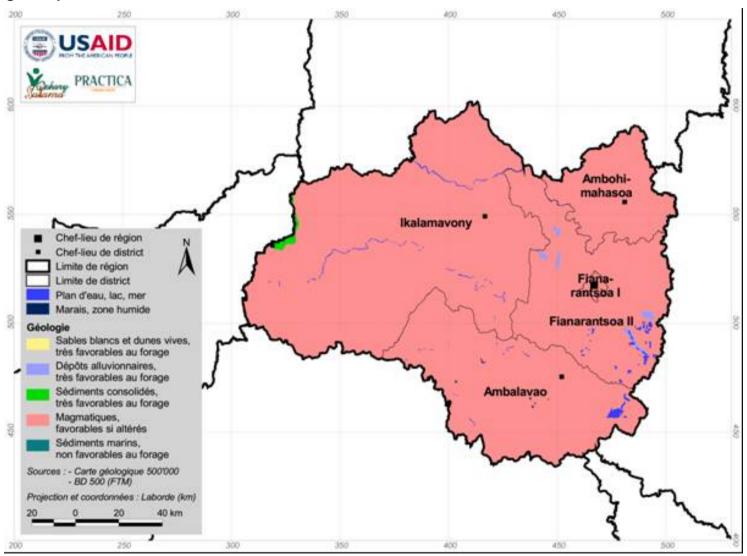


I. Amoro I Mania

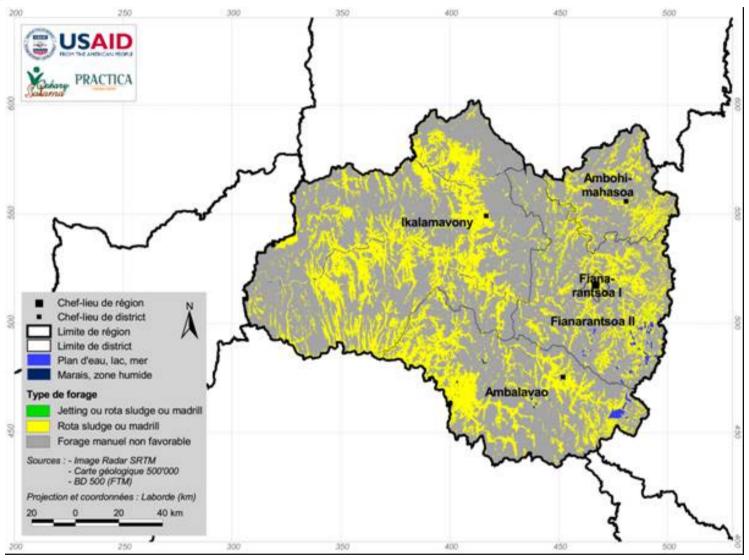

Carte 3. Géologie simplifiée


Carte 4. Forage manuel

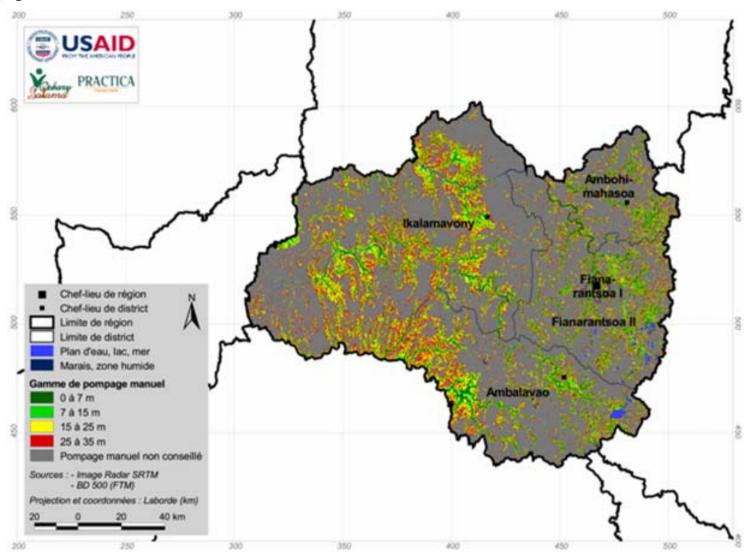
Carte 5. Pompage à motricité humaine

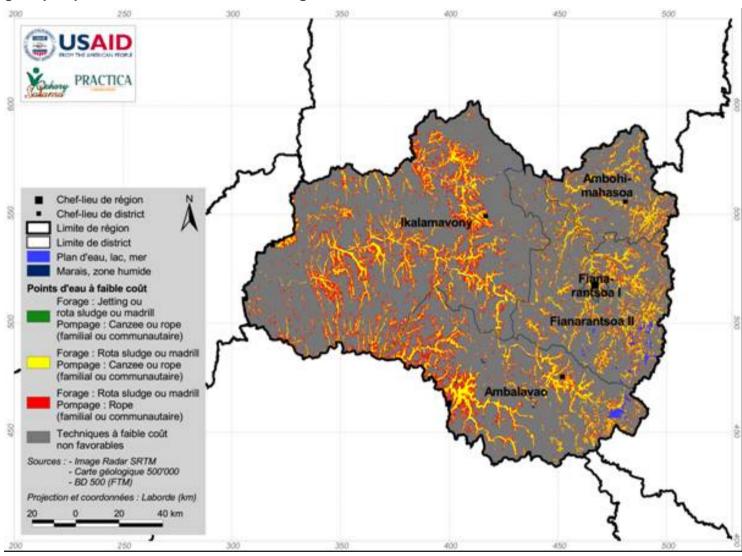


Carte 6. Forage et pompe à motricité humaine technologies confondues



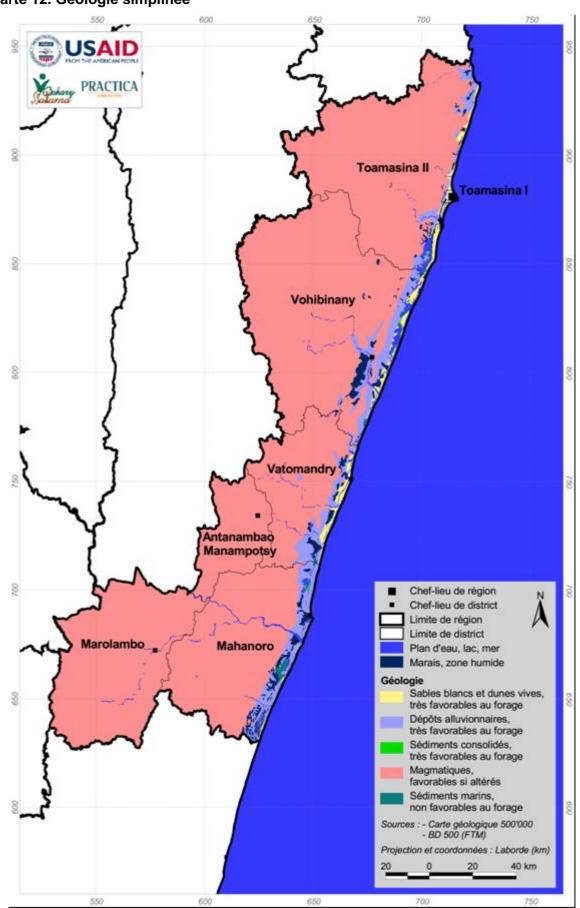
II. Haute Masiatra


Carte 7. Géologie simplifiée

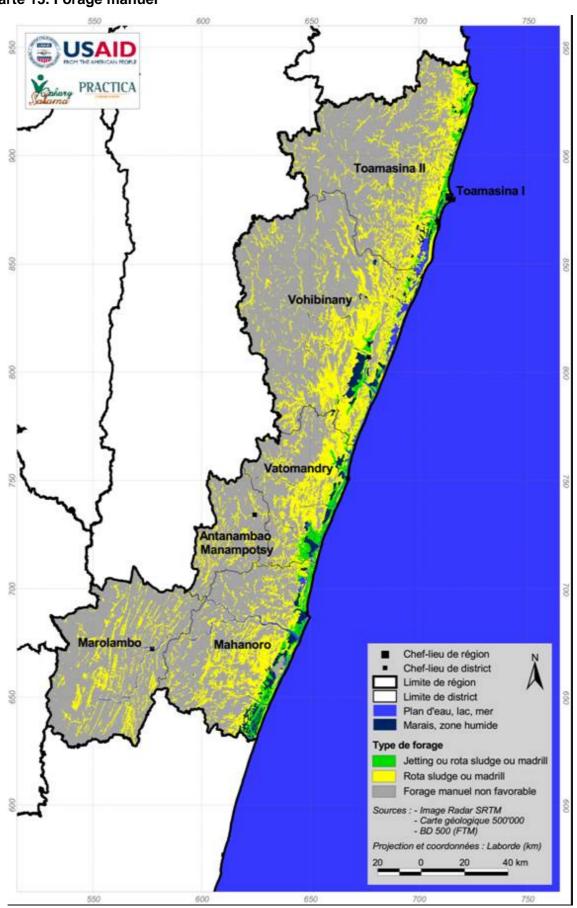

Carte 8. Forage manuel


Carte 9. Pompage à motricité humaine

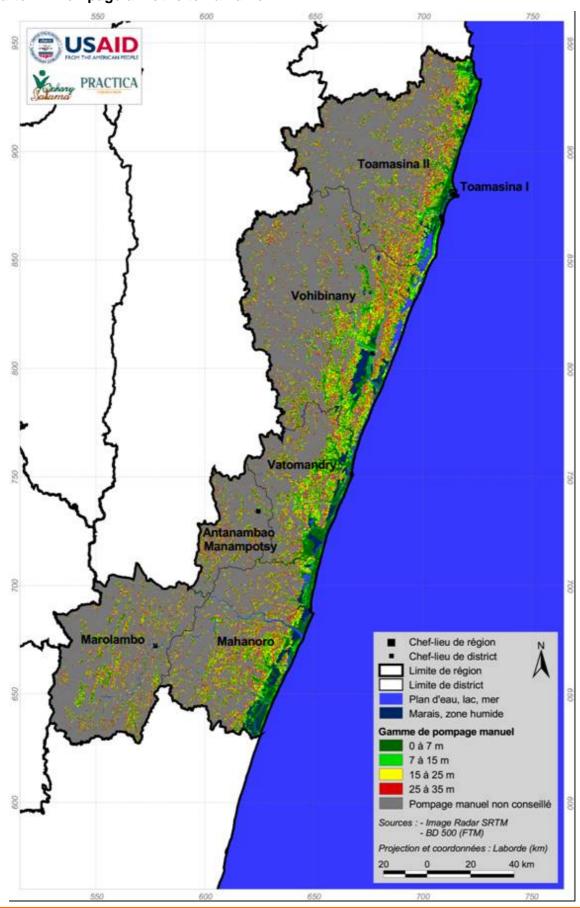
Carte 10. Forage et pompe à motricité humaine technologies confondues



Carte 11. Zone Toamasina

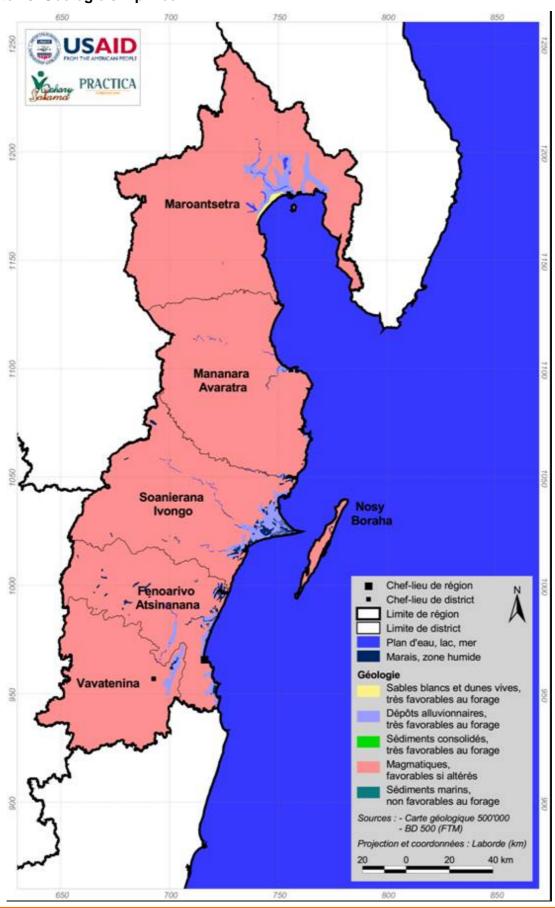


III. Antsinanana

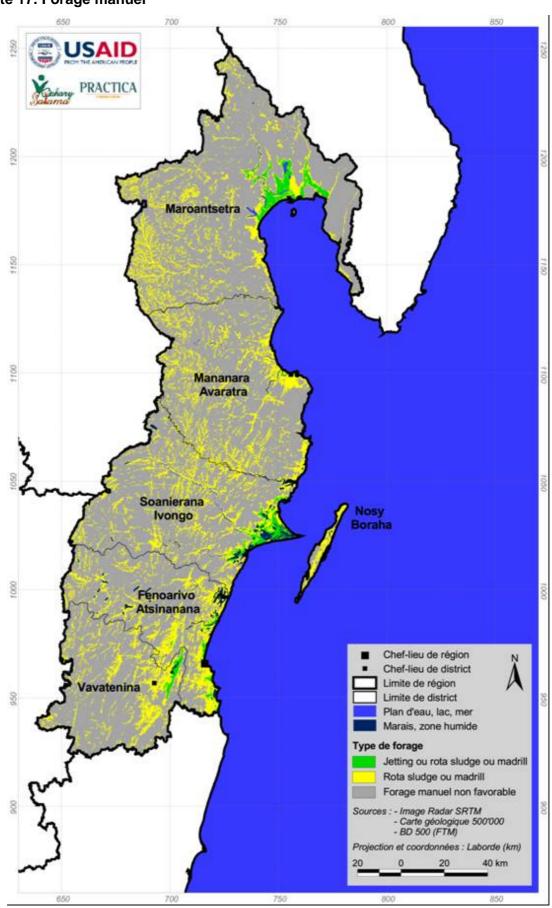

Carte 12. Géologie simplifiée

Carte 13. Forage manuel

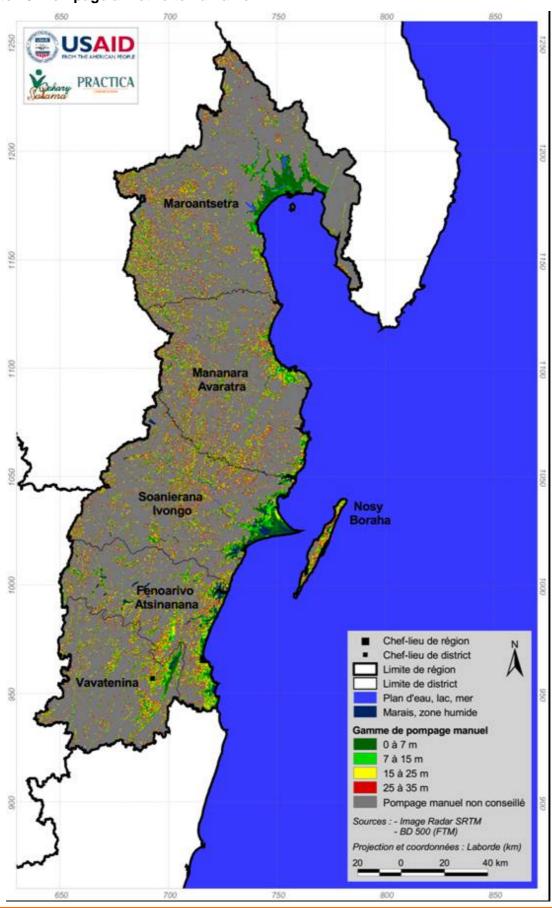
Carte 14. Pompage à motricité humaine



Toamasina II Toamasina I Vohibinany Manampotsy Chef-lieu de région Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Points d'eau à faible coût Marolambo Mahanoro Forage : Jetting ou rota sludge ou madrill Pompage : Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Rope (familial ou communautaire) Techniques à faible coût non favorables Sources : - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 40 km

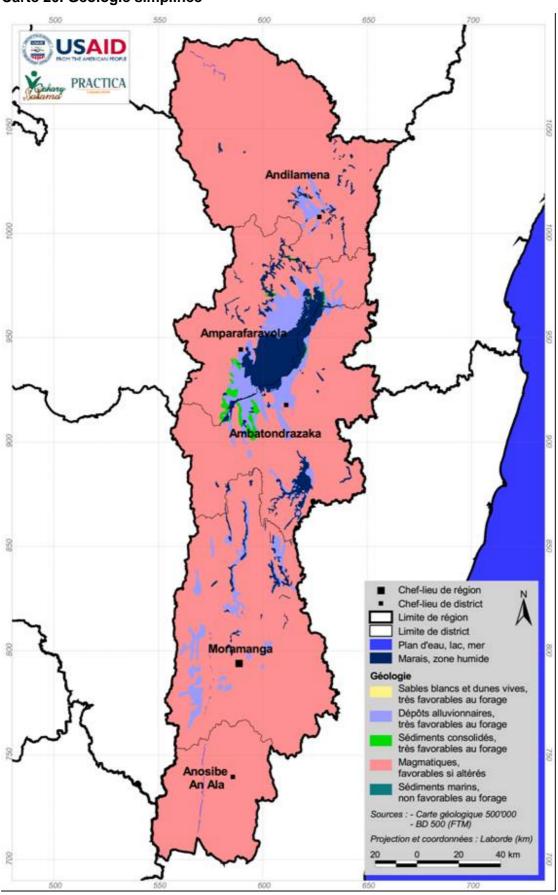

Carte 15. Forage et pompe à motricité humaine technologies confondues

IV. Analanjirofo

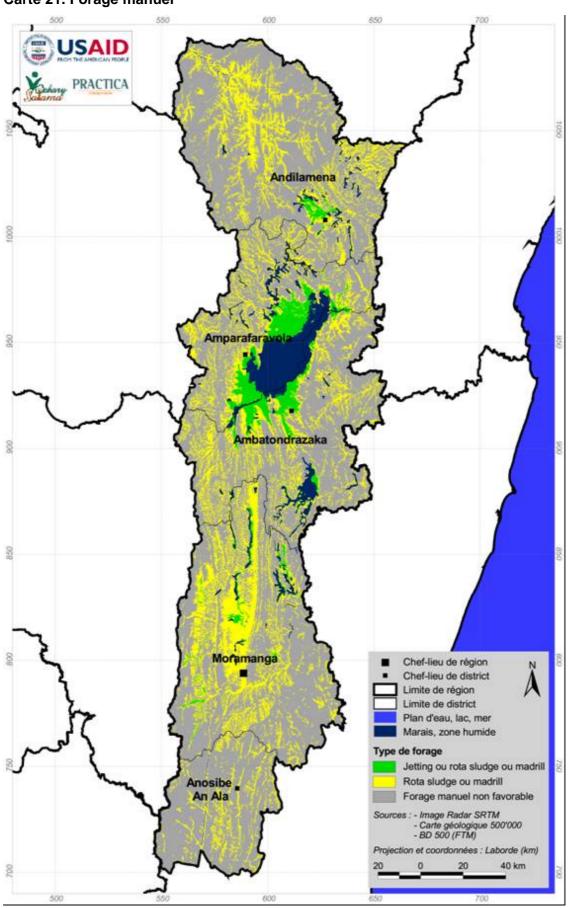

Carte 16. Géologie simplifiée

Carte 17. Forage manuel

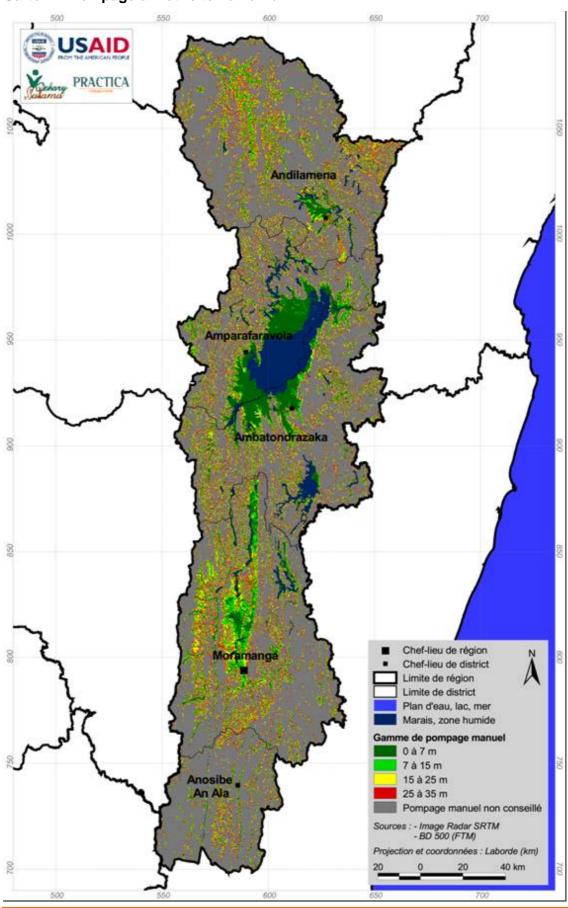
Carte 18. Pompage à motricité humaine



Maroantsetra Mananara **Avaratra** Soanierana Nosy Ivongo Boraha Chef-lieu de région Chef-lieu de district Limite de région Fenoarivo Limite de district **Atsinanana** Plan d'eau, lac, mer Marais, zone humide Points d'eau à faible coût Forage : Jetting ou rota sludge ou madrill Pompage: Canzee ou rope Vavatenina (familial ou communautaire) Forage : Rota sludge ou madrill Pompage : Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage : Rope (familial ou communautaire) Techniques à faible coût non favorables Sources: - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km)

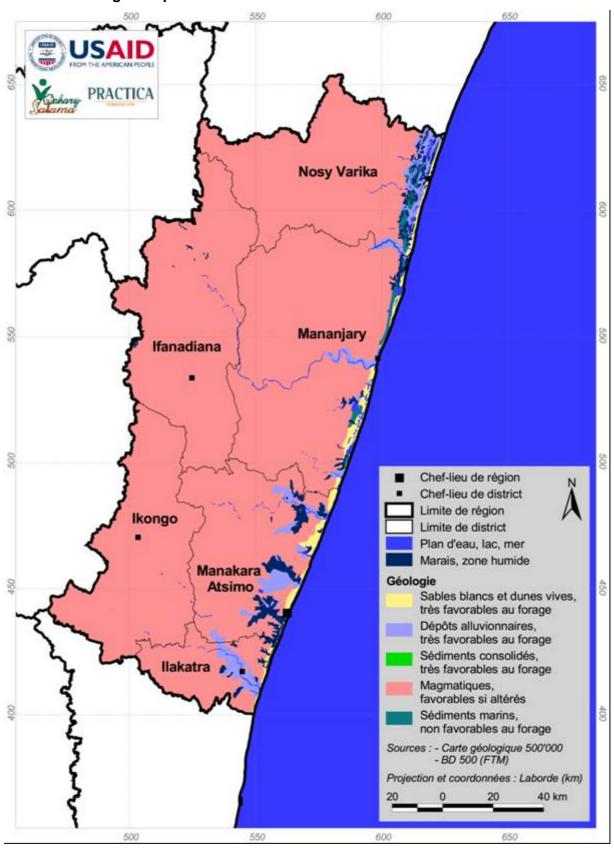

Carte 19. Forage et pompe à motricité humaine technologies confondues

V. Alaotramangoro

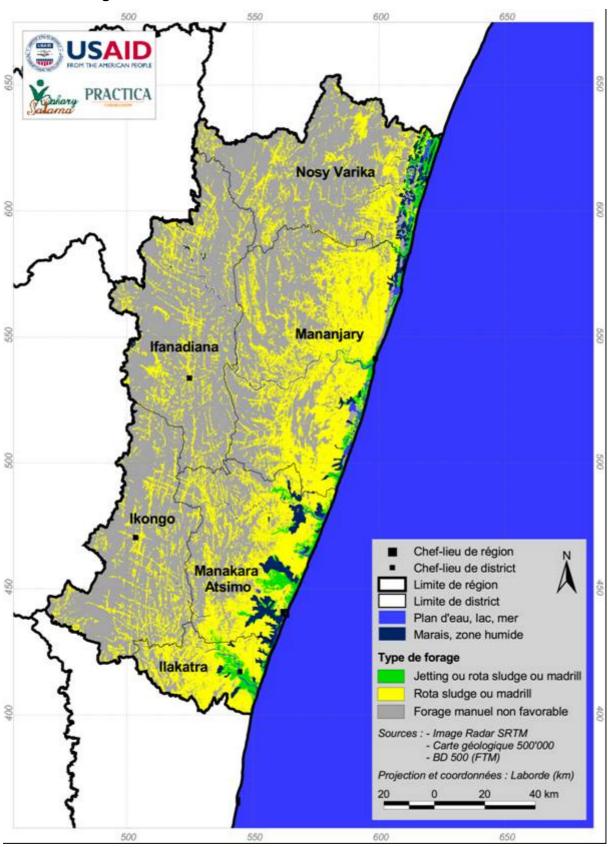

Carte 20. Géologie simplifiée

Carte 21. Forage manuel

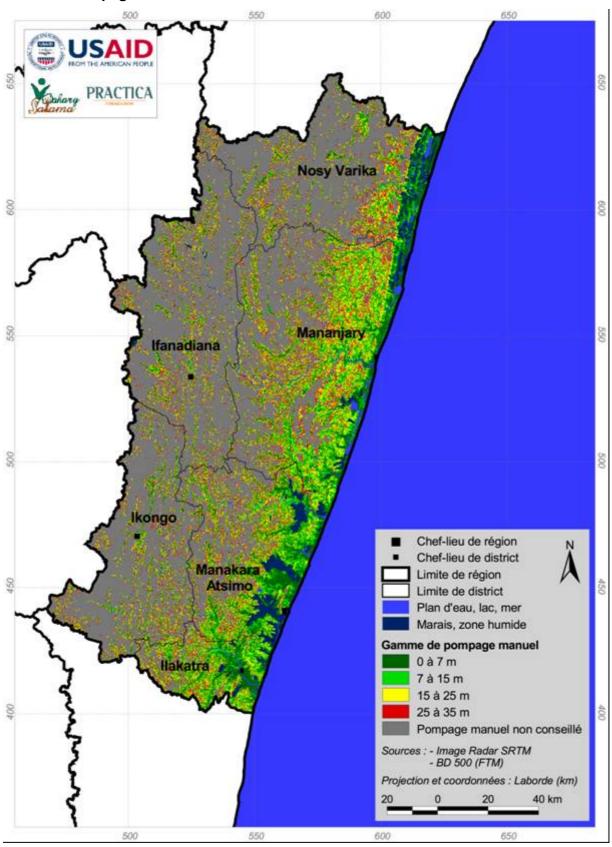
Carte 22. Pompage à motricité humaine



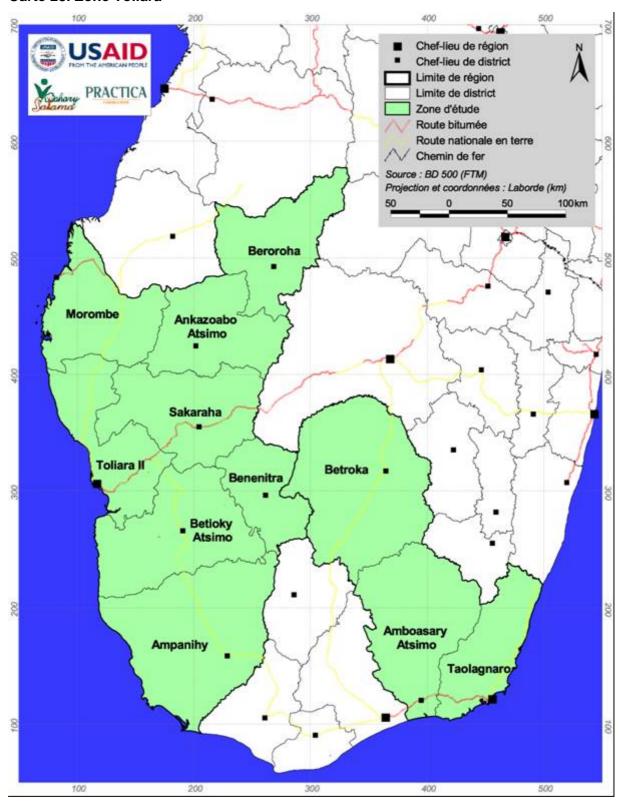
PRACTICA Andilamena Ambatondrazaka Chef-lieu de région Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Points d'eau à faible coût Forage : Jetting ou rota sludge ou madrill Pompage : Canzee ou rope Moramanga (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Canzee ou rope (familial ou communautaire) Forage : Rota sludge ou madrill Pompage : Rope (familial ou communautaire) Anosibe . Techniques à faible coût non favorables Sources: - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 40 km


Carte 23. Forage et pompe à motricité humaine technologies confondues

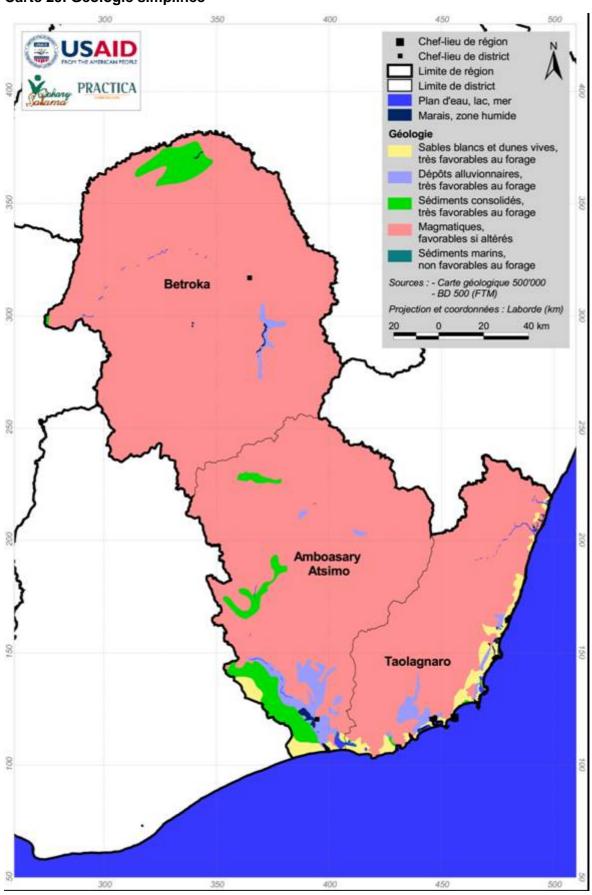
VI. Vatovavy Fitovinany


Carte 24. Géologie simplifiée

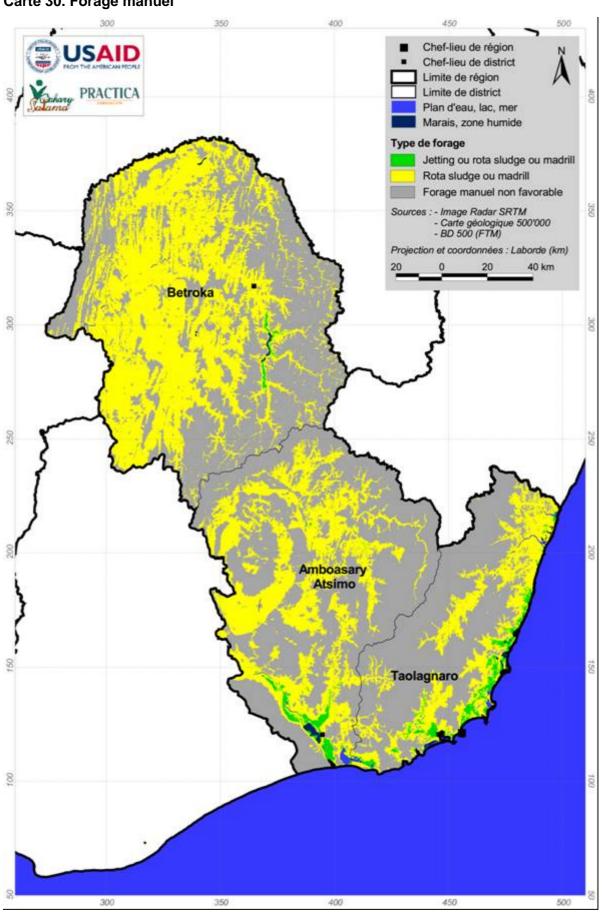
Carte 25. Forage manuel


Carte 26. Pompage à motricité humaine

Nosy Varika Mananjary Ifanadiana Chef-lieu de région Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Ikongo Points d'eau à faible coût Forage: Jetting ou rota sludge ou madrill Manakara Pompage: Canzee ou rope Atsimo (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Rope (familial ou communautaire) Techniques à faible coût non favorables Sources: - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 40 km 550 600 500


Carte 27. Forage et pompe à motricité humaine technologies confondues

Carte 28. Zone Toliara

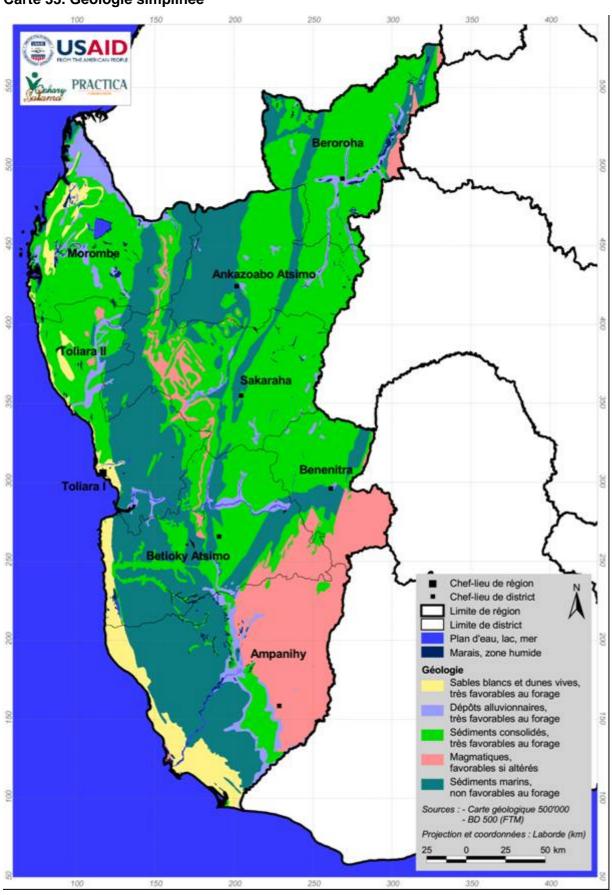


VII. Anosy

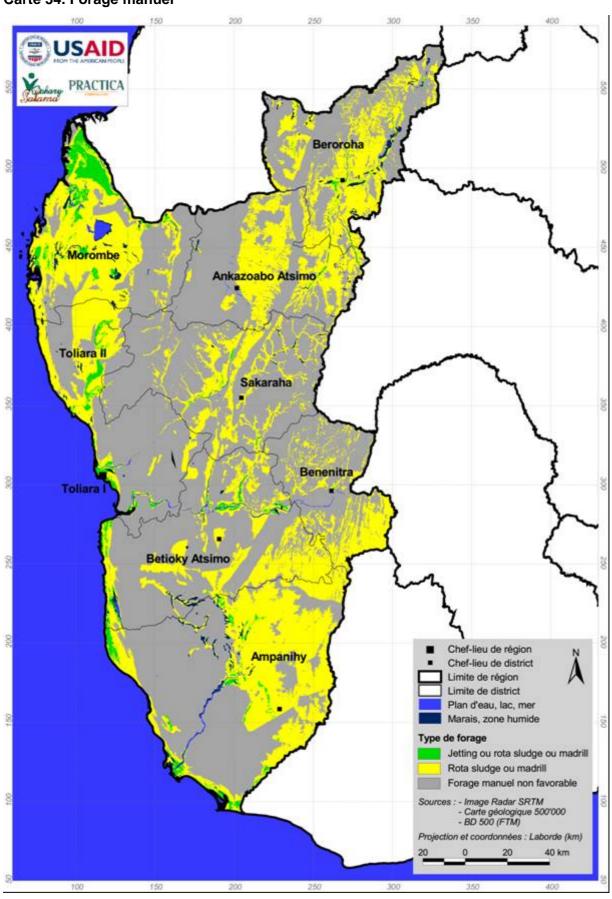
Carte 29. Géologie simplifiée

Carte 30. Forage manuel

Chef-lieu de région Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Gamme de pompage manuel 0à7m 7 à 15 m 15 à 25 m 25 à 35 m Pompage manuel non conseillé Sources : - Image Radar SRTM - BD 500 (FTM) Projection et coordonnées : Laborde (km) Betroka Amboasary Atsimo Taolagnaro


Carte 31. Pompage à motricité humaine

Chef-lieu de région Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Points d'eau à faible coût Forage: Jetting ou rota sludge ou madrill Pompage: Canzee ou rope (familial ou communautaire) Forage : Rota sludge ou madrill Pompage: Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Rope (familial ou communautaire) Techniques à faible coût non favorables Sources: - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 40 km Amboasary Atsimo Taolagnaro 450 500


Carte 32. Forage et pompe à motricité humaine technologies confondues

VIII. Atsimo Andrefana

Carte 33. Géologie simplifiée

Carte 34. Forage manuel

Carte 35. Pompage à motricité humaine PRACTICA Beroroha Ankazoabo Atsimo Benenitra Toliara Belieky Atsimo Chef-lieu de région Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Gamme de pompage manuel 0 à 7 m 7 à 15 m 15 à 25 m 25 à 35 m Pompage manuel non conseillé Sources : - Image Radar SRTM - BD 500 (FTM)

Projection et coordonnées : Laborde (km)

50 km

PRACTICA Beroroh Morombe Ankazoabo Atsimo Tollara / Benenitra Toliara Chef-lieu de région Beticky Atsimo Chef-lieu de district Limite de région Limite de district Plan d'eau, lac, mer Marais, zone humide Points d'eau à faible coût Forage : Jetting ou rota sludge ou madrill Ampanih Pompage: Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage: Canzee ou rope (familial ou communautaire) Forage: Rota sludge ou madrill Pompage : Rope (familial ou communautaire) Techniques à faible coût non favorables Sources : - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km)

Carte 36. Forage et pompe à motricité humaine technologies confondues

4. Estimation de la population desservie

4.1. Méthodologie

Les cartes d'estimation de la population ont été réalisées à partir des superficies de chaque commune favorable aux technologies de l'eau à faible coût.

La marge d'erreur en appliquant cette méthodologie de calcul est évaluée à plus ou moins 15%.

Les statistiques populations des communes sont extraites des tables de données de la BD500. Pour information la population totale de Madagascar indiquée par les tables de la BD500 est de 17.8 millions d'habitants et l'annuaire de la base de données eau et assainissement (Mars 2007) indique 18.2 millions d'habitants soit un écart de 2%.

Le cartes indiquent par district le pourcentage de population, rurale et urbaine confondue, pouvant être potentiellement desservi par des technologies de l'eau à faible coût. Pour une interprétation optimale des résultats un tableau indique la répartition de la population par zone rurale et urbaine. Pour indication 72% de la population de la zone d'étude se trouve en milieu rural.

4.2. Analyse des données

Pour rappel, le Madagascar Action Plan lancé en 2007, en remplacement du document stratégie de réduction de la pauvreté (DSRP), défini la feuille de route et les priorités de développement du gouvernement Malgache horizon 2011.

Tableau 9. Taux comparés d'accès à l'eau potable¹

	DSRP 2005	2006	MAP 2012	OMD 2015	DSRP 2015
eau potable rural	37%	31%	53%	54%	80%
eau potable urbain	92%	62%	95%	86%	100%
eau potable national	48%	38%	65%	62%	84%

L'analyse de données s'intéresse aux populations situées en zone rurale ou le taux d'accès aux infrastructures d'eau potable est le plus faible et constitue un enjeu majeur pour l'atteinte des objectifs du MAP.

¹ Sources document de stratégie de réduction de la pauvreté / rapport sur le suivi des objectifs du millénaire pour le développement à Madagascar 2004 (PNUD) / le MAP défi et solutions pour l'eau potable et l'assainissement Mars 2007 (DEPA)

Tableau 10. Taux d'accès aux infrastructures d'eau potable²

Région	Taux acces aux infrastr. d'eau potable				
Alaotra Mangoro	44%				
Amoron i Mania	61%				
Analanjirofo	28%				
Anosy	15%				
Atsimo Andrefana	41%				
Atsinanana	14%				
Matsiatra Ambony	21%				
Vatovavy Fitovinany	18%				

La région d'**Amoron I Mania** a déjà atteint les objectifs du MAP (53%) avec un taux de 61%. Deux autres régions dans une proche avenir devraient également atteindre sans difficulté les objectifs du MAP : **Alaotra Mangoro** et **Atsimo Andrefana**.

Les régions les plus défavorisées et pour lesquelles des efforts importants doivent être consentis sont : **Analanjirofo**, **Anosy**, **Atsinanana**, **Matsiatra Ambony** et **Vatovavy Fitovinany**. Ces régions peuvent être classées <u>PRIORITAIRES</u> pour des actions et des investissements en infrastructures d'eau potable.

Plus d'un tiers de la population située en zone rurale dans les régions classées comme PRIORITAIRES peuvent potentiellement être desservies en eau potable par des technologies de l'eau à faible coût soit environ 1 290 000 habitants et 2 083 808 habitants toutes régions confondues.

Tableau 11. Population potentiellement desservie par les technologies à faible coût³

	Population rurale			Population urbaine		Population totale			
Région -	Totale	Couverte		Totale	Couverte		Totale	Couverte	
	habitants	habitants	%	habitants	habitants	%	habitants	habitants	%
Alaotra Mangoro	848 701	311 290	37%	156 254	65 603	42%	1 004 955	376 893	38%
Amoron i Mania	593 886	96 126	16%	90 358	23 421	26%	684 244	119 547	17%
Analanjirofo	717 546	196 158	27%	160 576	82 026	51%	878 122	278 184	32%
Anosy	501 434	194 159	39%	88 063	51 580	59%	589 497	245 739	42%
Atsimo Andrefana	890 402	386 288	43%	241 762	155 870	64%	1 132 164	542 158	48%
Atsinanana	819 156	252 840	31%	305 094	246 164	81%	1 124 250	499 004	44%
Matsiatra Ambony	936 860	227 252	24%	213 763	75 991	36%	1 150 623	303 243	26%
Vatovavy Fitovinany	986 103	419 695	43%	164 994	105 553	64%	1 151 097	525 248	46%
TOTAL	6 294 088	2 083 808	33%	1 420 864	806 208	57%	7 714 952	2 890 016	37%

Pour plus de précision les chiffres de population potentiellement desservie par des technologies à faible coût doivent intégrer le taux d'accès à l'eau potable des populations avant aménagement, autrement dit les infrastructures existantes.

² Annuaire de la base de données eau et assainissement 27 Mars 2007 – DEPA

³ Les données populations sont extraites de la table de données de la BD500 (FTM)

Tableau 12. Taux accès à l'eau potable avant et après aménagements à faible coût

Région	Population totale située en zone rurale (hab)	Accès eau potable avant aménagement à faible coût (%)	Population atteinte par aménagement à faible coût (hab)	Accès eau potable après aménagement a faible coût (%)
Alaotra Mangoro	848 701	44%	174 322	65%
Amoron i Mania	593 886	61%	37 489	67%
Analanjirofo	717 546	28%	141 234	48%
Anosy	501 434	15%	165 035	48%
Atsimo Andrefana	890 402	41%	227 910	67%
Atsinanana	819 156	14%	217 442	41%
Matsiatra Ambony	936 860	21%	179 529	40%
Vatovavy Fitovinany	986 103	18%	344 150	53%
TOTAL	6 294 088	30%	1 487 112	53%

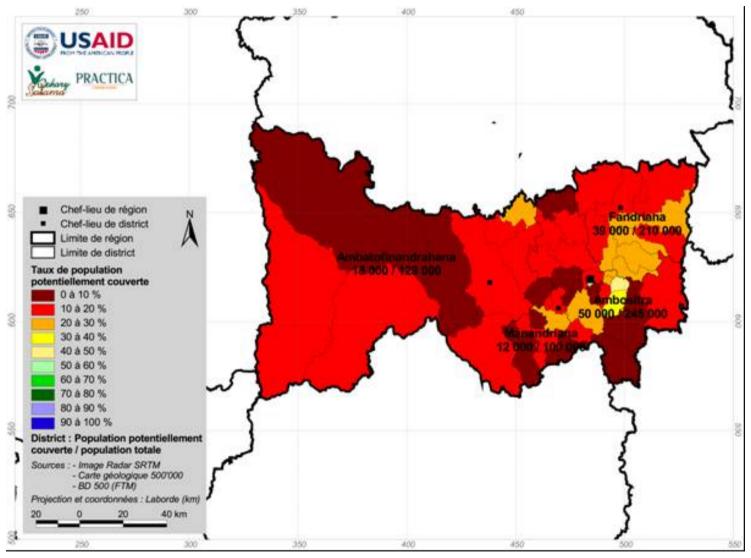
Le nombre de population situé dans les régions PRIORITAIRES ayant potentiellement accès à l'eau potable compte tenu du taux d'accès avant aménagement est de 1 047 390 habitants et de 1 487 112 habitants toutes régions confondues. Ce chiffre net est donc inférieur au nombre brut de population potentiellement desservie.

L'utilisation de ces technologies permettrait d'atteindre horizon 2012 un taux de 53% d'accès à l'eau potable des populations situées en zone rurale régions confondues, chiffre conforme aux objectifs de 53% du MAP.

Ces chiffres sont des estimations permettant de définir des tendances démontrant que l'utilisation de technologies à faible coût permettrait de manière significative l'augmentation de l'accès à l'eau potable des populations situées en zone rurale en combinaison avec d'autres méthodes conventionnelles.

Tableau 13.Répartition par district de la population potentiellement desservie⁴

		Population rurale		Population urbaine		Population totale				
Dágian	District	Totale Couverte		Totale Couverte		te	Totale Couverte			
Région	District	habitants	habitants	%	habitants	habitants	%	habitants	habitants	%
	Ambatondrazaka	299 646	119 516	40%	39 528	24 229	61%	339 174	143 745	42%
	Amparafaravola	228 012	123 686	54%	47 354	17 627	37%	275 366	141 313	51%
Alaotra	Andilamena	29 041	5 587	19%	18 160	4 405	24%	47 201	9 992	21%
Mangoro	Anosibe An Ala	78 362	8 400	11%	24 244	3 662	15%	102 606	12 062	12%
	Moramanga	213 640	54 101	25%	26 968	15 680	58%	240 608	69 781	29%
	Total de la région	848 701	311 290	37%	156 254	65 603	42%	1 004 955	376 893	38%
	Ambatofinandrahana	101 830	15 325	15%	26 696	3 148	12%	128 526	18 473	14%
Amoron i	Ambositra	214 067	33 845	16%	31 324	15 873	51%	245 391	49 718	20%
	Fandriana	177 556	34 585	19%	32 338	4 400	14%	209 894	38 985	19%
Mania	Manandriana	100 433	12 371	12%	0	0		100 433	12 371	12%
	Total de la région	593 886	96 126		90 358	23 421	26%	684 244	119 547	
	Fenoarivo Atsinanana	238 244	77 618	33%	19 396	15 499	80%	257 640	93 117	36%
	Mananara Avaratra	87 622	12 972		37 880	14 640	39%	125 502	27 612	22%
	Maroantsetra	167 176	46 178		21 907	21 684	99%	189 083	67 862	
Analanjirofo	Nosy Boraha	6 703	4 269		11 268	5 829	52%	17 971	10 098	
,	Soanierana Ivongo	82 431	24 656		36 135	13 893	38%	118 566	38 549	
	Vavatenina	135 370	30 465		33 990	10 481	31%	169 360	40 946	
	Total de la région	717 546	196 158		160 576	82 026	51%	878 122	278 184	
	Amboasary Atsimo	131 272	38 807	30%	33 556	15 543	46%	164 828	54 350	_
	Betroka	134 684	59 417		12 542	7 141	57%	147 226	66 558	
Anosy	Taolagnaro	235 478	95 935		41 965	28 896	69%	277 443	124 831	
	Total de la région	501 434	194 159		88 063	51 580	59%	589 497	245 739	
	Ampanihy	204 126	107 214	_	24 017	10 518	44%	228 143	117 732	
	Ankazoabo Atsimo	29 932	107 214		24 206	6 349	26%	54 138	16 859	
		29 932			6 463	870		28 680	9 568	
	Benenitra		8 698				13%			
A 4 m 1 m m	Beroroha	28 438	9 642		17 364	7 167	41%	45 802	16 809	
Atsimo	Betioky Atsimo	220 002	66 528		29 054	11 936	41%	249 056	78 464	
Andrefana	Morombe	111 649	76 547		9 547	8 454	89%	121 196	85 001	
	Sakaraha	57 579	14 894	26%	20 320	2 573	13%	77 899	17 467	
	Toliara I	0	0		110 791	108 003	97%	110 791	108 003	
	Toliara II	216 459	92 255		0	0		216 459	92 255	
	Total de la région	890 402	386 288		241 762	155 870	64%	1 132 164	542 158	
	Antanambao Manampotsy	37 662	4 771		13 168	1 306	10%	50 830	6 077	12%
	Mahanoro	200 462	63 659		36 693	23 726	65%	237 155	87 385	
	Marolambo	115 470	14 248	12%	24 037	3 170	13%	139 507	17 418	
Atsinanana	Toamasina I	0	0		197 098	192 569	98%	197 098	192 569	
Atsiriariaria	Toamasina II	177 038	54 984		0	0		177 038	54 984	31%
	Vatomandry	134 724	62 716	47%	10 686	9 545	89%	145 410	72 261	50%
	Vohibinany	153 800	52 462	34%	23 412	15 848	68%	177 212	68 310	39%
	Total de la région	819 156	252 840	31%	305 094	246 164	81%	1 124 250	499 004	44%
	Ambalavao	185 659	43 437	23%	28 755	15 281	53%	214 414	58 718	27%
	Ambohimahasoa	212 575	45 259	21%	9 248	1 140	12%	221 823	46 399	21%
Matsiatra	Fianarantsoa I	0	0		159 710	54 256	34%	159 710	54 256	34%
Ambony	Fianarantsoa II	492 499	129 003	26%	0	0		492 499	129 003	
	Ikalamavony	46 127	9 553		16 050	5 314	33%	62 177	14 867	
	Total de la région	936 860	227 252		213 763	75 991		1 150 623	303 243	
	Ifanadiana	138 395	19 116		18 105	3 191	18%	156 500	22 307	
	Ikongo	93 210	13 706		33 297	5 108		126 507	18 814	
	Ilakatra	113 322	88 515		10 500	10 162		123 822	98 677	
Vatovavy	Manakara Atsimo	251 705	142 862		36 427	34 888		288 132	177 750	
Fitovinany	Mananjary	230 244	113 263		28 544	27 780		258 788	141 043	-
		159 227				24 424		197 348	66 657	
	Nosy Varika		42 233		38 121					
	Total de la région	986 103	419 695	43%	164 994	105 553	64%	1 151 097	525 248	46%

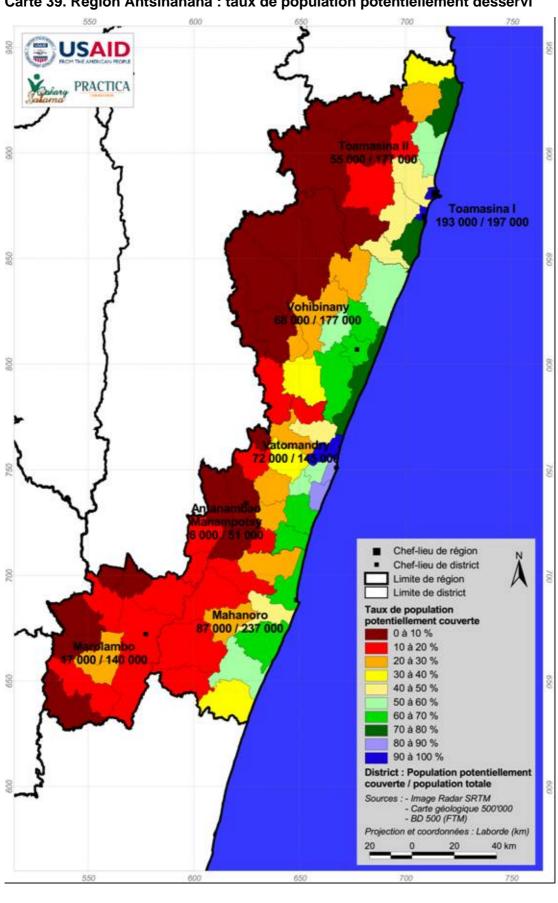

_

 $^{^4}$ Les données population totale, rurale et urbaine par district sont extraites de la table de données de la BD500 (FTM)

Tableau 14. Répartition par district du taux d'accès avant et après aménagements

Région	District	Population totale située en zone rurale (hab)	Accès eau potable avant aménagement à faible coût (%)	Population atteinte par aménagement à faible coût (hab)	Accès eau potable après aménagement a faible coût (%)
	Ambatondrazaka	299 646		66 929	66%
	Amparafaravola	228 012		69 264	74%
Alaotra Mangoro	Andilamena	29 041	44%	3 129	55%
/ llaotra iviarigoro	Anosibe An Ala	78 362	4470	4 704	50%
	Moramanga	213 640		30 297	58%
	Total de la région	848 701		174 322	65%
	Ambatofinandrahana	101 830		5 977	67%
	Ambositra	214 067		13 200	67%
Amoron i Mania	Fandriana	177 556	61%	13 488	69%
	Manandriana	100 433		4 825	66%
	Total de la région	593 886		37 489	67%
	Fenoarivo Atsinanana	238 244		55 885	51%
	Mananara Avaratra	87 622		9 340	39%
	Maroantsetra	167 176		33 248	48%
Analanjirofo	Nosy Boraha	6 703	28%	3 074	74%
-	Soanierana Ivongo	82 431		17 752	50%
	Vavatenina	135 370		21 935	44%
	Total de la région	717 546		141 234	48%
	Amboasary Atsimo	131 272		32 986	40%
A	Betroka	134 684	450/	50 504	52%
Anosy	Taolagnaro	235 478	15%	81 545	50%
	Total de la région	501 434		165 035	48%
	Ampanihy	204 126		63 256	72%
	Ankazoabo Atsimo	29 932		6 201	62%
	Benenitra	22 217		5 132	64%
	Beroroha	28 438		5 689	61%
	Betioky Atsimo	220 002	1,,,,	39 252	59%
Atsimo Andrefana	Morombe	111 649	41%	45 163	81%
	Sakaraha	57 579		8 787	56%
	Toliara I	0		0	0%
	Toliara II	216 459		54 430	66%
	Total de la région	890 402		227 910	67%
	Antanambao Manampotsy	37 662		4 103	25%
	Mahanoro	200 462		54 747	41%
	Marolambo	115 470		12 253	25%
	Toamasina I	0	1	0	0%
Atsinanana	Toamasina II	177 038	14%	47 286	41%
	Vatomandry	134 724		53 936	54%
	Vohibinany	153 800		45 117	43%
	Total de la région	819 156		217 442	41%
	Ambalavao	185 659		34 315	39%
	Ambohimahasoa	212 575	1	35 755	38%
	Fianarantsoa I	0	1	0	0%
Matsiatra Ambony	Fianarantsoa II	492 499	21%	101 912	42%
	Ikalamavony	46 127	1	7 547	37%
	Total de la région	936 860	†	179 529	40%
	Ifanadiana	138 395		15 675	29%
	Ikongo	93 210	1	11 239	30%
	Ilakatra	113 322	1	72 582	82%
Vatovavy Fitovinany	Manakara Atsimo	251 705	18%	117 147	65%
valovavy Fitovinany	Mananjary	230 244	1 .5,0	92 876	58%
	Nosy Varika	159 227	†	34 631	40%
	Total de la région	986 103	-	344 150	53%
TOTAL	Total de la region	6 294 088	30%	1 487 112	53%

Carte 37. Région Amaro I Mania : taux de population potentiellement desservi



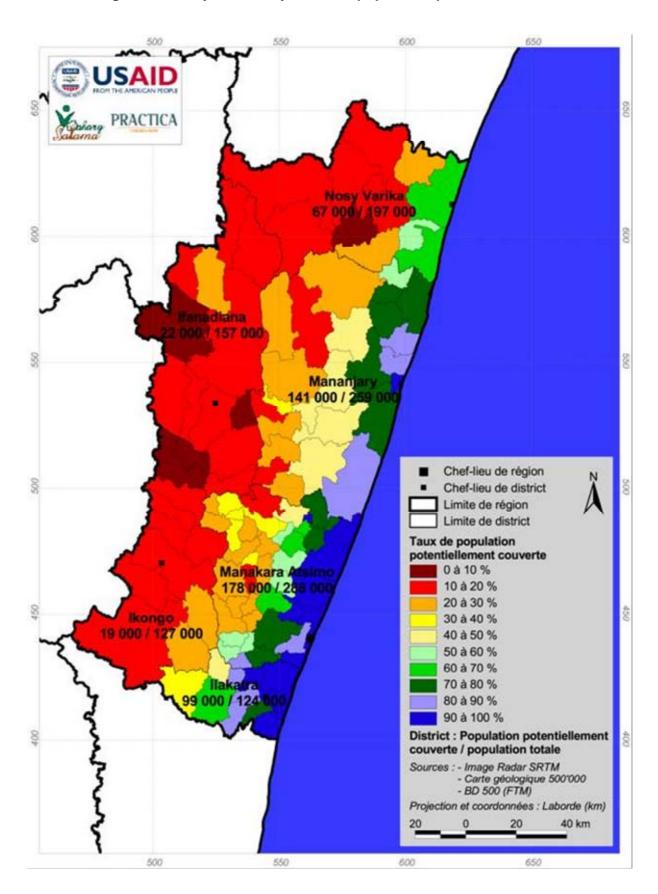
USAID PRACTICA 46 000 / 222 000 Chef-lieu de région Chef-lieu de district Ikalamavony 15 000 / 62 000 Limite de région Limite de district Taux de population Fignarantsoa I 54 000 7 460 000 potentiellement couverte 0 à 10 % 10 à 20 % Finnarantsoa II 20 à 30 % 129 000 / 492 000 30 à 40 % 40 à 50 % 50 à 60 % Ambalavao 60 à 70 % 70 à 80 % 80 à 90 % 90 à 100 % District : Population potentiellement couverte / population totale Sources: - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 40 km

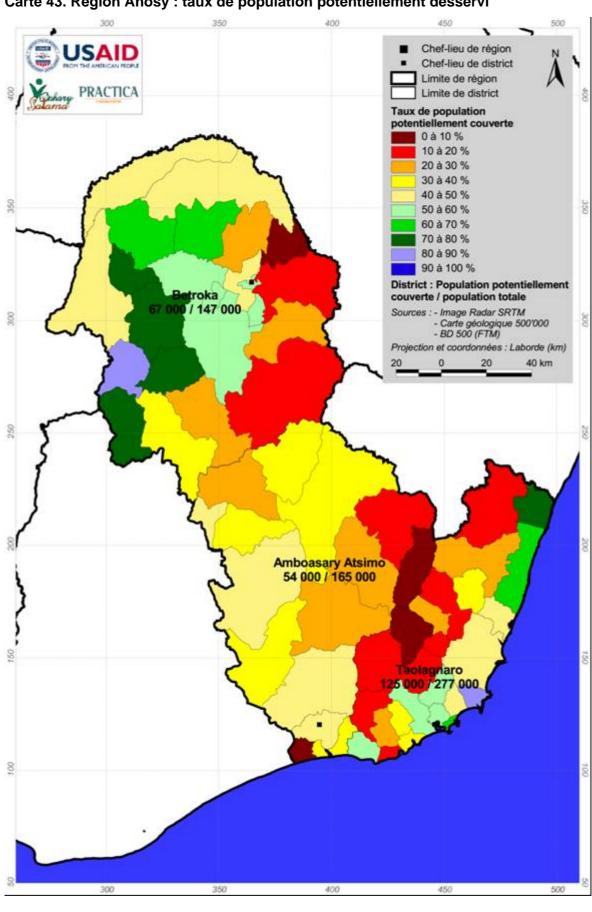
Carte 38. Région Haute Masiatra : taux de population potentiellement desservi

250

450

Carte 39. Région Antsinanana : taux de population potentiellement desservi


Marcantsetra 68 000 / 189 00 Mananara Avaratra 28 000 / 126 000 Soanierana Ivongo 39 000 / 119 000 **Nosy Boraha** 10 000 / 18 000 Chef-lieu de région Chef-lieu de district Fenoarivo Atsinanana Limite de région 93 000 / 258 000 Limite de district Taux de population potentiellement couverte 0 à 10 % 10 à 20 % 20 à 30 % 30 à 40 % Vavatorina 000 /169 000 40 à 50 % 50 à 60 % 60 à 70 % 70 à 80 % 80 à 90 % 90 à 100 % District : Population potentiellement couverte / population totale Sources : - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 650


Carte 40. Région Analanjirofo : taux de population potentiellement desservi

PRACTICA Andilamena 10 000 / 47 000 Amparafaravel 141 000 / 275 0 **Ambatondrazaka** 144 000 / 339 000 Chef-lieu de région Chef-lieu de district Limite de région Limite de district Moramanga Taux de population 70 000 / 241 00 potentiellement couverte 0 à 10 % 10 à 20 % 20 à 30 % 30 à 40 % 40 à 50 % 50 à 60 % 60 à 70 % 70 à 80 % 80 à 90 % 90 à 100 % District : Population potentiellement couverte / population totale Anosibe An Ala Sources : - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km)

Carte 41. Région Alaotramangoro : taux de population potentiellement desservi

Carte 42. Région Vatovavy Fitovinany : taux de population potentiellement desservi

Carte 43. Région Anosy: taux de population potentiellement desservi

PRACTICA Beroroha 17 000 / 46 000 000 nkazoabo Atsimo 17 000 / 54 000 Sakaraha 17 000 / 78 000 92 000 / 215 000 Benenitra 10 000 / 29 000 Toliara 108 000 / 111 (78 000 / 249 000 Chef-lieu de région Chef-lieu de district Limite de région Limite de district Taux de population potentiellement couverte 0 à 10 % 10 à 20 % 20 à 30 % 30 à 40 % Ampanihy 40 à 50 % 118 000 / 50 à 60 % 60 à 70 % 70 à 80 % 80 à 90 % 90 à 100 % District : Population potentiellement couverte / population totale Sources : - Image Radar SRTM - Carte géologique 500'000 - BD 500 (FTM) Projection et coordonnées : Laborde (km) 50 km

Carte 44. Région Atsimo Andrefana : taux de population potentiellement desservi

5. Estimation du coût de mise à l'échelle

5.1. Coût des technologies à faible coût

Ce coût correspond à la réalisation d'un point d'eau potable incluant :

- L'équipement de colonne de captage
- La fourniture et pose de la pompe
- La réalisation de la dalle d'assainissement

Les coûts indiqués sont exprimés toutes taxes comprises (TTC) et peuvent être soumis à variation (15 à 20 %) en fonction du nombre d'ouvrages à réaliser, de la situation du chantier et de l'évolution des prix des matières premières.

Tableau 15. Coût d'infrastructures d'eau potable à faible coût

	Profondeur en mètres							
en ariary	7			15		30		
Technologie	Jetting	Rota sludge	Madrill	Rota sludge	Madrill	Rota sludge	Madrill	
	Point d'eau communautaire							
Canzee	1 700 000	1 315 600	3 200 000	1 750 800	3 300 000	NR	NR	
Pompe Corde	2 150 000	1 765 600	3 650 000	2 100 800	3 650 000	2 658 000	3 750 000	
Point d'eau familial								
Pompe Corde	1 265 000	880 600	2 765 000	1 264 800	2 814 000	1 713 000	2 805 000	

NR : non réalisable

Tableau 16. Coût par habitant d'infrastructures d'eau potable à faible coût

	Profondeur en mètres							
en ariary	7			15		30		
Technologie	Jetting	Rota sludge	Madrill	Rota sludge	Madrill	Rota sludge	Madrill	
	Point d'eau communautaire							
Canzee	17 000	13 156	32 000	17 508	33 000	NR	NR	
Pompe Corde	14 333	11 771	24 333	14 005	24 333	17 720	25 000	
Point d'eau familial								
Rope familial	25 300	17 612	55 300	25 296	56 280	34 260	56 100	

NR : non réalisable

Le calcul moyen (mini et maxi) par habitant a été réalisé après sélection pour chaque gamme de profondeur du montant le plus ou le moins élevé.

Tableau 17. Coût moyen par habitant d'infrastructures d'eau potable à faible coût

	En ariary	En \$US
Coût moyen minimal	15 666	10
Coût moyen maximal	24 556	15
Coût moyen	20 111	13

Taux 1\$US = 1600 Ariary

Le coût par habitant avec l'utilisation de technologies dites « conventionnelles » ; forage rotary, puits busé équipé de pompe India Mark ou Vergnet) est compris entre 25 \$US et 50 \$US et jusqu'à 100 \$US pour les adductions d'eau gravitaire.⁵

Pour précision le coût d'investissement par habitant est calculé à partir du coût du point d'eau divisé par le nombre de personnes ayant accès au point d'eau.

Le nombre de personnes ayant accès au point d'eau varie d'une pompe à l'autre :

- Canzee : 100 personnes
- Pompe à corde communautaire : 150 personnes
- Pompe à corde familiale : 50 personnes

Ce chiffre a été choisi volontairement à la baisse par rapport à la recommandation du manuel de procédures validé par la direction de l'eau potable et de l'assainissement qui indique 250 personnes pour les ouvrages équipés de pompes à motricité humaine.

Plusieurs arguments en faveur d'une diminution de ce nombre de personnes :

- Une meilleure distribution spatiale des points d'eau en zone rurale caractérisée par une habitation éparse
- Un accès et un service de l'eau amélioré par la multiplication de points d'eau
- Une pression d'utilisation moins importante sur les infrastructures d'eau potable garant d'une meilleure maintenance et longévité des ouvrages
- Une densité de pompes élevée favorable au développement d'activités lucratives ou solidaires de maintenance et de réparation
- Une gestion communautaire du point d'eau simplifiée en raison du nombre réduit d'utilisateurs et favorable à une gestion familiale du point d'eau moins conflictuelle

Les points d'eau réalisés avec des technologies conventionnelles ont un coût 2 à 5 fois supérieurs aux technologies à faible coût et ne permettent pas la multiplication des points d'eau et l'amélioration de l'accès à l'eau aux populations.

Les opérateurs engagés dans la fabrication des équipements et la réalisation des points d'eau à faible coût sont peu nombreux et se trouvent quelque fois en situation de monopole. La multiplication d'opérateurs dans ce secteur porteur permettrait de niveler les coûts de prestation d'un marché en plein essor offrant ainsi un gage de compétitivité et de qualité.

⁵ Manuel de procédures pour la mise en place des projets eau et assainissement – Direction de l'eau et de l'assainissement – Juin 2005

5.2. Coût de mise à l'échelle

L'estimation de la mise à l'échelle consiste à évaluer l'investissement nécessaire en infrastructures d'eau potable afin d'atteindre les objectifs fixés par le MAP.

Tableau 18. Coût total de mise à l'échelle

Région	Population atteinte par aménagement à faible coût (hab)	Coût de mise à l'échelle en Ariary	
Alaotra Mangoro	174 322	2 730 973 457	
Amoron i Mania	37 489	587 313 198	
Analanjirofo	141 234	2 212 599 469	
Anosy	165 035	2 585 477 334	
Atsimo Andrefana	227 910	3 570 487 453	
Atsinanana	217 442	3 406 500 959	
Matsiatra Ambony	179 529	2 812 542 463	
Vatovavy Fitovinany	344 150	5 391 528 811	
TOTAL	1 487 112	23 297 423 145	

Taux 1\$US = 1600 Ar

\$14 560 889

Ce calcul est réalisé à partir du coût moyen minimal d'investissement par personne pour la réalisation d'infrastructures d'eau potable à faible coût, 15 666 Ariary/pers, multiplié par le nombre d'habitants potentiellement desservi par des technologies de l'eau à faible coût.

Le montant total d'investissement est de 23,3 milliards Ariary ou 14,5 millions de dollars US pour les 8 régions de l'étude. Pour les 5 régions prioritaires le montant s'élève à 16.4 milliards d'Ariary ou 10,5 millions de dollars US.

L'investissement nécessaire en utilisant des technologies conventionnelles serait de **37.1 milliards d'Ariary**, soit 1.5 fois supérieur aux technologies à faible coût, en considérant un coût d'investissement par personne minimal de 40 000 Ariary/personne qui peut aller jusqu'à 80 000 Ariary/personne.

Le coût d'investissement au niveau régional peut être ramené à l'échelle du district correspondant à un découpage administratif local proche des capacités d'intervention des ONG internationales, nationales et bailleurs de fonds bilatéraux et multilatéraux. Le cartes de faisabilité techniques, l'estimation du nombre de population potentiellement desservi et le coût de mise à l'échelle au niveau local du district sont autant d'outils d'aide à la décision et de base de conception de projets et programmes qui peuvent contribuer à l'atteinte des objectifs du MAP pour l'accès de la population à l'eau potable.

Tableau 19. Répartition par district du coût de mise à l'échelle

Région	District	Population atteinte par aménagement	Coût de mise à l'échelle en Ariary	
3.5.1		à faible coût (hab)		
	Ambatondrazaka	66 929	1 048 523 960	
	Amparafaravola	69 264	1 085 107 723	
	Andilamena	3 129	49 015 223	
Alaotra Mangoro	Anosibe An Ala	4 704	73 693 909	
	Moramanga	30 297	474 632 642	
	Total de la région	174 322	2 730 973 457	
	Ambatofinandrahana	5 977	93 633 094	
	Ambositra	13 200	206 787 084	
Amoron i Mania	Fandriana	13 488	211 308 355	
	Manandriana	4 825	75 584 666	
	Total de la région	37 489	587 313 198	
	Fenoarivo Atsinanana	55 885	875 506 202	
	Mananara Avaratra	9 340	146 320 009	
	Maroantsetra	33 248	520 873 063	
Analanjirofo	Nosy Boraha	3 074	48 152 954	
, anatarijiroro	Soanierana Ivongo	17 752	278 111 790	
	Vavatenina	21 935	343 635 451	
	Total de la région	141 234	2 212 599 469	
	Amboasary Atsimo	32 986	516 765 223	
	Betroka	50 504	791 213 937	
Anosy		81 545		
	Taolagnaro		1 277 498 175	
	Total de la région	165 035	2 585 477 334	
	Ampanihy	63 256	990 986 626	
	Ankazoabo Atsimo	6 201	97 144 677	
	Benenitra	5 132	80 396 233	
	Beroroha	5 689	89 121 692	
Atsimo Andrefana	Betioky Atsimo	39 252	614 923 035	
	Morombe	45 163	707 529 364	
	Sakaraha	8 787	137 666 301	
	Toliara I	0	0	
	Toliara II	54 430	852 719 525	
	Total de la région	227 910	3 570 487 453	
	Antanambao Manampotsy	4 103	64 279 450	
	Mahanoro	54 747	857 674 595	
	Marolambo	12 253	191 962 607	
Atsinanana	Toamasina I	0	0	
	Toamasina II	47 286	740 796 744	
	Vatomandry	53 936	844 969 602	
	Vohibinany	45 117	706 817 961	
	Total de la région	217 442	3 406 500 959	
	Ambalavao	34 315	537 590 019	
	Ambohimahasoa	35 755	560 139 666	
Matsiatra Ambony	Fianarantsoa I	0	0	
ivialsialia Alliboriy	Fianarantsoa II	101 912	1 596 581 836	
	Ikalamavony	7 547	118 230 943	
	Total de la région	179 529	2 812 542 463	
	Ifanadiana	15 675	245 569 913	
	Ikongo	11 239	176 071 418	
	Ilakatra	72 582	1 137 090 441	
Vatovavy Fitovinany	Manakara Atsimo	117 147	1 835 248 428	
	Mananjary	92 876	1 455 010 729	
	Nosy Varika	34 631	542 537 882	
	Total de la région	344 150	5 391 528 811	
TOTAL		1 487 112	23 297 423 145	
Taux 1\$US = 1600 Ar			\$14 560 889	

6. Recommandations sur l'exploitation cartographique

La cartographie, l'estimation de la population desservie et l'estimation du coût de mise à l'échelle ont été réalisée à partir de sources de données référencées mais qui peuvent être soumises à critiques et interprétations.

Le lecteur et utilisateur de l'étude doit être en mesure de connaître l'incertitude relative aux résultats obtenus afin d'en mesurer l'impact sur les activités envisagées et y apporter les corrections ou les majorations nécessaires.

6.1. Incertitudes des données de base

Pour chaque groupe de données de base une qualification de l'impact sur les résultats attendus est notifiée :

- impact négligeable sur les résultats qualitatifs et quantitatifs
- impact faible sur les résultats qualitatifs et quantitatifs
- impact important sur les résultats qualitatifs et quantitatifs

611 Cartographie BD500

Plusieurs anomalies ont été relevées et corrigées sur le géo référencement de localités, routes, pistes, découpage administratif (communal et district). **Impact négligeable**

612 Table de données BD500

La classification, la répartition et le nombre de population en zone rurale et zone urbaine a été réalisée à partir de la codification utilisée dans les tables de la BD500. Quelques incertitudes et anomalies apparaissent dans la classification des zones rurales et urbaines. **Impact faible**

Une incertitude sur le nombre total de population existe en raison de l'absence de recensement récent et de manière spécifique concernant la population située en zone rurale. **Impact important**

Taux d'accès aux équipement en infrastructures d'eau potable

Les taux utilisés sont issus de l'annuaire de la base de donnée eau et assainissement (Mars 2007 direction de l'eau potable et de l'assainissement). Les taux d'équipements régionaux semblent sur – évalués. **Impact important**

Plusieurs explications et constatations au niveau local et régional :

- de nombreux points d'eau non fonctionnels sont comptabilisés (étude Voahary Salama sur la région Amron I Mania)
- disparité importante entre le nombre d'utilisateurs réels et comptabilisés pour le calcul du taux d'accès (étude Voahary Salama sur la région Amron I Mania)
- disparité de calcul entre les données existantes de la BDEA et les résultats publiés

- prise en compte d'un nombre standard d'utilisateurs (250 personnes) et non d'un nombre réel
- absence d'un dispositif dynamique de mise à jour de la BDEA

La région d'Amoron I Mania ayant un taux de 61% classifiée comme ayant atteint les objectifs du MAP pourrait avoir un taux d'accès largement inférieur.

Le ministère de l'énergie et des mines a défini comme projet spécifique « l'inventaire national des points d'eau tout niveaux confondus ».⁶ dont l'objectif semble être la mise à jour des données existantes.

6.2. Fiabilité et limites des outils d'aide à la décision

Pour chaque outil d'aide à la décision il est indiqué un niveau de fiabilité :

- Bonne : mise en oeuvre limitée à une visite de terrain partiel
- Moyenne : nécessite une visite de terrain, réalisation d'ouvrages tests et/ou enquêtes population avant mise en œuvre.

621 Coût des technologies

Les montants indiqués sont estimatifs et peuvent varier d'une région à l'autre, selon le nombre d'ouvrages à réaliser (15 à 20%) et le prix des matières premières (inflation). **Bonne**

622 Cartes thématiques

- La carte de géologie simplifiée renseigne de manière précise sur les grandes zones géologiques rencontrées dans les régions d'étude. Ces résultats sont conformes aux nombreuses publications existantes. **Bonne**
- La carte de forage manuel renseigne sur la faisabilité de cette méthode en fonction de la géologie favorable. La fiabilité de la carte dépend des zones géologiques :
 - Bonne sols sableux et alluvionnaires
 - **Moyenne** sols magmatiques potentiellement altérée : une visite de terrain et la réalisation de forages tests confirmeront la validité des résultats. La faisabilité peut passer de Moyenne à Bonne après validation des résultats.

La fiabilité de cette carte est estimée à 70%.

- ♣ La carte pompage manuel indique de manière simulée la profondeur probable de l'aquifère libre avec une précision de + ou – 2 mètres. Bonne
- La carte de faisabilité de technologies à faible coût à une fiabilité identique à la carte forage car étroitement liée. **Bonne à Moyenne**

_

⁶ Contexte AEP Madagascar (Juin 2008) – Chap IV Projets spécifiques

623 Estimation de la population potentiellement desservie

Compte tenue de l'incertitude sur les données de base population et sur le taux d'accès aux infrastructures d'eau potable, l'estimation de la population potentiellement desservie est probablement sous estimée. **Moyenne**

En l'absence de données ou d'études permettant de confirmer ou d'infirmer cette hypothèse de sous estimation un taux de confiance de 50% peut être appliqué, dans le cadre d'une estimation macro régionale, au nombre total de population potentiellement desservi soit un nombre de population qui passerait de 1.48 à 2.22 millions d'habitants sur un nombre total de 2.89 millions d'habitants potentiellement desservis hors taux d'infrastructures existantes.

Au niveau local, du district, une approche différente peut être envisagée en considérant comme nul le taux d'infrastructures existantes dans les régions ou le taux d'accès est extrêmement faible.

624 Estimation du coût de mise à l'échelle

Cette estimation est directement dépendante de l'estimation de la population desservie car facteur du coût d'infrastructure par habitant. **Moyenne**

En adoptant la même approche basée sur un taux de confiance de 50% l'investissement passerait de 23.29 à 34,94 milliards d'Ariary (21.84 millions \$US) avec un maximum de 45.27 milliards d'Ariary (28.29 millions \$US) en considérant comme nul le taux d'infrastructures existantes.

6.3. Paramètre non considéré dans l'étude

Les cartes de faisabilité de technologies de l'eau à faible coût ne prennent pas en considération la qualité de l'eau de l'aquifère (salinité, teneur en fer et nitrate) car ne faisant pas partie de l'étude initiale.

Cependant il s'avèrerait difficile d'établir une couche d'information supplémentaire à la cartographie existante pour soustraire les zones présentant un aquifère impropre à la consommation humaine, notamment en raison de l'absence ou du nombre réduit de données statistiques renseignant sur la qualité de l'eau dans les régions d'étude.

Il est donc difficile d'évaluer l'impact de la qualité de l'eau sur les zones favorables aux technologies de l'eau à faible coût.

Les cartes thématiques et estimations réalisées doivent être perçues par son lecteur comme des outils d'aide à la décision dans le choix des technologies à adopter dans la région d'étude. Elles définissent des orientations technologiques qui doivent être confirmées par des visites de terrain, la réalisation d'ouvrages tests et l'étude de la qualité de l'eau non prise en compte dans l'étude (salinité, fer, nitrate).