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1.1 Introduction 

Groundwater is a key renewable resource all over the world, valuable 

for human life and economic development. It constitutes a major 

portion of the Earth’s hydrologic cycle and occurs in permeable 

geologic formations known as aquifers. These aquifers have a structure 

that can store and transmit water at rates fast enough to supply 

reasonable amounts of water to water wells. Groundwater’s 

importance stems from its ability to act as a large reservoir of water, 

providing ‘buffer storage’ during periods of drought. It accounts for 

about 98 per cent of available freshwater (and about 0.76 per cent of all 

the water on Earth), the remaining 2 per cent being either surface water 

(i.e. streams and lakes) or distributed in the soil and atmosphere 

(Shiklomanov, 1998). According to WWAP (2009), groundwater 

supplies almost half of the world’s drinking water and plays a key role 

in food production, accounting for over 40 per cent of global 

consumption of water for agricultural irrigation (Siebert et al., 2010).  

According to UNEP et al. (2003), the last 50 years have seen 

unprecedented development of groundwater resources. Indeed, it is a 

major source of water in arid and semi-arid regions, in rural areas of 

developing countries, and for several mega-cities in industrialised 

territories. Groundwater is the world’s most extracted natural 

resource, given that it is so intensively consumed in order to meet so 

many and variable needs, for the domestic, agricultural and industrial 

sector. Groundwater use has significantly increased in recent decades 

and groundwater is currently at a global withdrawal rate of about 700–

800 km3 per year (Zektser and Everet, 2004). Given all this, and as the 

WHO (2006) affirms, it is not surprising that in many regions of the 

world groundwater represents the main, if not the only, source of 

drinking water—particularly where surface water resources are 

limited and/or contaminated to some degree. However, some of these 

regions are rapidly depleting their aquifers, consuming groundwater 

faster than it is naturally replenished (e.g., Postel, 1993 cited in 
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Sorichetta, 2010). By studying global depletion of groundwater 

resources, Wada et al. (2010) confirms with higher certainty that 

groundwater depletion is indeed a significant factor. According to 

Foster and Loucks (2006), unplanned depletion of non-renewable 

groundwater reserves can undermine, and potentially erode, the 

economic and social vitality of the traditional groundwater-dependent 

community – and instances of the collapse of such rural communities 

are known. On the one hand, 1.7 billion people live in areas where 

groundwater resources are overexploited (Gleeson et al., 2012) and an 

unknown number are experiencing pollution problems and/or 

degradation of groundwater dependent ecosystems (Conti et al., 2016). 

In the near future, population growth is expected to stress water 

availability even more (Shiklomanov, 1998), especially in developing 

countries, which are home to the majority of those people who do not 

have access to safe drinking water (Bidlack et al., 2004, cited in 

Sorichetta, 2010). This matter tends to be complicated by the 

vulnerability of all aquifers to some degree or other (NRC, 1993). In 

addition, once groundwater is contaminated, remediation is very 

challenging, costly, time consuming, and sometimes even unfeasible 

(e.g., USEPA, 1990). Indeed, according to Aljazzar (2010), groundwater 

systems worldwide are experiencing an increasing risk of pollution 

from agricultural activities, urbanisation, and industrial development.  

In short, the rapid growth of human population is exerting enormous 

stresses on the available groundwater resources, inducing a real water 

crisis that is represented both in terms of scarcity and deterioration of 

water quality. For example in a recent study published in 2017 on 

“Global aquifers dominated by fossil groundwater bit wells vulnerable 

to modern contamination” Jasechko  says “Deep wells mostly pump 

fossil groundwater but many still contain some recent rain and snow 

melt, which is vulnerable to modern contamination”. The authors of 

this study conclude that water quality risk should be considered along 

with sustainable use when managing fossil groundwater resources.  It 

is in such a context that Sorichetta (2010) claims that it is more 
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important than ever to develop and adopt an integrated water 

resources management approach at national and international levels 

(GWP, 2000). Groundwater quality protection must be one of the first 

aspects to be considered in any such approach, in order to tackle the 

problem of global freshwater scarcity (WHO, 2004 and previous 

editions).  Arthur et al. (2007) argue that to effectively and properly 

protect groundwater it is crucial to be able to identify areas where 

groundwater may be most vulnerable to contamination—and to then 

translate this information into vulnerability maps, which can be used 

to prevent or minimise harmful impacts on groundwater quality by 

potential end-users, such as land and water resources managers.  

The first attempt to produce groundwater vulnerability maps was 

made in France by Margat (1968), with the intention of showing where 

contamination was more likely to occur as a function of different 

hydrogeological settings.  Many different methods to assess 

groundwater vulnerability maps exist in the literature, based on 

different approaches and with diverse input variables. Generally, these 

methods are restricted to assessing intrinsic groundwater 

vulnerability. Among numerous methods, the most popular is the 

DRASTIC index (Aller et al., 1987). As a basic requirement for effective 

management, this method to map vulnerability allows for the 

delineation of groundwater systems according to their sensitivity to 

pollution. According to Aljazzar (2010) efforts to undertake 

groundwater vulnerability assessment will provide a fundamental 

overview of the degree of protection of a certain groundwater system, 

after which the more vulnerable zones will receive more concern, and 

faster action plans and measures—and such a scenario will save time 

and costs and provide the possibility of safeguarding groundwater 

effectively. However, the outputs of such methods (i.e., groundwater 

vulnerability maps) must be scientifically sound, meaningful and 

reliable (Sorichetta, 2010) in order to be considered as effective tools in 

environmental planning and management. For Focazio et al. (2002), a 

groundwater vulnerability map must support scientifically-defensible 
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decisions to protect groundwater resources, represent the study area 

through a limited number of vulnerability classes, and depict the 

actual spatial distribution of the contamination in the study area.  

In the case of DRASTIC, since the method is subject to different forms 

of adjustment, it is subject to various critiques among hydrogeologists 

(Aljazzar, 2010). To this regard, according to Focazio et al. (2002), the 

use of statistical methods to assess groundwater vulnerability 

represents a reasonable compromise of model complexity and cost, in 

order to produce scientifically-defensible end products.  Indeed, as 

cited by Sorichetta (2010), statistical methods provide the possibility to 

objectively identify the factors influencing vulnerability in the study 

area, over various spatial scales ranging from catchment (Worral and 

Kolpin, 2003) to subnational (Arthur et al., 2007) and national (Nolan, 

2001). Nevertheless, it should be highlighted that the meaningfulness 

of these outputs is not always straightforward and that additional 

interpretation is often required to obtain functional (reclassified) 

vulnerability maps (Focazio et al., 2002), the reliability of which needs 

to be carefully addressed before they can be used in environmental 

planning and management. Therefore, at present, research efforts in 

this field should primarily be aimed not at implementing new 

statistical modelling techniques, but rather at evaluating the 

robustness of already available ones and the reliability of their end-

products (i.e. reclassified groundwater vulnerability maps)—as also 

stated by Fabbri and Chung (2008). 

Nitrate contamination is very often a proxy for other possible 

groundwater pollutants and can, therefore, be very informative when 

assessing overall groundwater quality. The results of this study of 

groundwater vulnerability assessment provide a fundamental 

overview of the degree of protection of a specific groundwater system 

at the pan-African scale. Following this, the more vulnerable zones of 

transboundary aquifers will receive greater attention, as well as faster 
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action plans and measures; such a scenario will save time and costs 

and provide the potentiality to safeguard groundwater effectively. 

 

1.2 Problem statement and challenges  

Under natural conditions, groundwater is usually potable and needs 

almost no treatment before distribution and use. Because it is naturally 

protected by the soil and underlying unsaturated zones or confining 

strata, it is less vulnerable to anthropogenic impacts than surface water 

bodies. However, water quality is influenced by both direct point 

sources and non-point source pollution (NPS). According to Gogu, and 

Dassargues (2000), the single greatest, globally ubiquitous threat to 

groundwater quality is NPS contamination. Gurdak (2014) declares 

that all groundwater resources are vulnerable to NPS contamination. 

NPS contamination is often associated with land use or anthropogenic 

activities, including agriculture (pesticides from agricultural use, 

nitrogen from fertiliser and manure and livestock-borne pathogens, 

particle associated contaminants following erosion), built 

infrastructure (road salts, oil and grease,…), atmospheric deposits of 

anthropogenic and natural chemicals, etc. (Gurdak, 2008). 

Furthermore, Clarke et al. (1996) affirms that contamination is 

persistent and difficult to reverse, as a result of large storage and long 

residence times when aquifers become polluted. Other scholars, such 

as Boy-Roura (2013), add to this that aquifers are often overexploited, 

exploited at an unsustainable rate, or affected by pollution. 

In most countries throughout the world, urban and industrial 

development, and agriculture and mining activities have caused 

groundwater contamination (Boy-Roura, 2013).  Furthermore, Sililo et 

al. (2001) affirms that the pollution of groundwater resources is often 

a consequence of poor land-use planning—in particular, locating high 

risk activities in areas where they will have a negative impact on 

groundwater resources. According to  Groundwater Governance 
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(2013, cited in Zhou et al., 2015), the last few decades have witnessed 

an increased pressure on groundwater resources globally, which has 

in many cases induced abstraction beyond sustainable levels and 

increased levels of pollution. Diffuse NPS pollution from farming 

activities and point source pollution from sewage treatment and 

industrial discharge are the principal contaminant sources (Boy- 

Roura, 2013). One of the most common and persistent problems of 

groundwater pollution is associated with diffuse pollution generated 

through the intensification of agricultural activities over the last 

decades, with increased use of chemical fertilisers and higher 

concentrations of animal excrement in smaller areas (Boy-Roura, 2013). 

Agricultural land use leads to elevated concentrations of nutrients. 

According to Haller et al. (2013), on a global scale agricultural land use 

represents the largest diffuse pollution threat to groundwater quality. 

Elevated concentrations of nutrients (especially nitrogen and 

phosphorus) can cause a variety of problems, including degradation of 

ecosystems (for example, eutrophication of water bodies), and human 

health issues.  

The nitrate parameter is one of the indicators that reflects groundwater 

quality and its appropriateness to be safely used. Nitrate 

contamination due to emissions from agricultural and non-agricultural 

sources continues to exert considerable pressure on subsurface 

groundwater bodies all over the world (Mattern et al., 2009); it is 

probably the most widespread groundwater pollutant, especially in 

agricultural areas, and of great concern due to its existence in high 

concentrations, which threatens both human health and the 

environment (Aljazzar, 2010).  

The presence of nitrates in groundwater is generally revealed by 

analysing samples taken from wells or springs of a groundwater body. 

The data needed to monitor groundwater quality may be part of 

routine measurements (usually performed by water-supply 

companies) or be undertaken in a specific field campaign. However, in 
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many cases, the origins of groundwater contamination can remain 

unclear (Loague and Soutter, 2006), especially when this consists of 

compounds used in both agricultural and non-agricultural practices.  

High concentrations of nitrate in drinking water can cause blue baby 

syndrome, and its relation to cancer risk is still a point of discussion. 

In addition, nitrate ingestion has been linked to methemoglobinemia, 

adverse reproductive outcomes, and specific cancers, according to 

Ward et al. (2005).  

Protection of groundwater resources, both quantitatively and 

qualitatively, is becoming an increasingly global concern, as 

mentioned by several new directives in the past decade. As noted for 

example by Mattern (2009), Europe adopted Directives for reducing 

pressures of N on water resources: the European Council Directive 

concerning urban waste-water treatment for domestic and industrial 

sectors (91/271/EEC) and the Directive concerning the protection of 

waters against pollution caused by nitrates from agricultural sources 

(91/676/EEC). To achieve good qualitative and quantitative status of all 

water bodies by 2015, European Union Member States committed also 

to the European Water Framework Directive (2000/60/EEC).  

The continuous depletion of groundwater and the deterioration of its 

quality have forced hydrogeologists as well as decision makers to 

focus on implementing management and protection plans in order to 

sustainably safeguard water resources for current and future 

generations. According to Vrba and Zaporozec (1994), the compilation 

of aquifer vulnerability maps can provide land use managers with a 

valuable tool for establishing preventive and protective measures. And 

assessing the protection capacity of groundwater aquifers and their 

vulnerability to pollutants (nitrate, for example) is very important for 

an effective protection plan.   

At the continental scale framework for Africa, groundwater is an 

important source of water for meeting various demands. It is 

particularly important for arid and semi-arid countries in the Northern 
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and Southern parts of Africa since it is often the only source of water 

(UNEP, 2010). For example, in some arid and semi-arid countries and 

in the case of Libya groundwater dependence is as high as 95 % 

(Margat, 2010).  According to Adelana and MacDonald (2008), it is 

estimated that more than 100 million people, including rural people 

throughout Sub-Saharan Africa utilize groundwater for domestic 

supplies and livestock rearing. Seventy five per cent (75 %) of the 

continent’s population use groundwater as the source of drinking 

water (UNECA et al., 2000). However, the distribution of renewable 

groundwater in Africa is highly skewed. Indeed, according to 

Giordano (2005), more than half of Africa’s renewable groundwater is 

contained in just four countries: the Democratic Republic of Congo, 

The Republic of Congo, Cameroon and Nigeria. At the continent-scale, 

in terms of quantity, groundwater is mainly used for irrigation (75 %) 

while domestic water use represents around 20 %, although a high 

heterogeneity exists, with groundwater use in rural areas being very 

important for domestic use (UNECA et al. 2000). 

Although in Africa, water use is substantially less than in other 

continents, pressures on water resources are rapidly increasing. 

According to Sharaky (2016), water use in Africa is dominated by 

agriculture, as it is in other developing regions. Indeed, compared to 

any other major region, Africa has the highest percentage of water use 

for agriculture but the lowest percentage for domestic or industrial 

activities: it is estimated that 88 per cent of water in Africa is used for 

agriculture. Water quality can therefore be linked to agricultural 

pressures.  

Several studies in groundwater mapping at large scale have already 

been undertaken by organisations, associations and researchers. The 

most important ones, which support and contribute significantly to the 

management and protection of groundwater, include cartographic 

products developed by WHYMAP (the Worldwide Hydrogeological 

Mapping and Assessment Programme) and IGRAC (International 
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Groundwater Resources Assessment Centre). However, the majority 

of the activities developed in these programs are focusing on the 

quantitative aspects, while qualitative aspects (crucial for drinking 

water) are often ignored.  

Increasingly, methods that protect groundwater resources are being 

incorporated into land-use planning, or at least considered in the 

approval of new developments. Indeed, the review by Xu and Usher 

(2006) entitled ‘Groundwater pollution in Africa’ was one of the more 

important qualitative works providing insights into common issues 

with regards to groundwater pollution in Africa. Compilation of this 

book was made possible thanks to local scale information from a 

UNEP/UNESCO project, ‘Assessment of pollution status and 

vulnerability of water supply aquifers of African cities’. Xu and Usher 

confirm that groundwater in African cities is subject to different 

pollution pressures exerted by several sources, such as leaking sewage 

systems, solid waste dumpsites, household waste pits, surface water 

infiltration spots, peri-urban agriculture sites, petrol service stations 

(underground storage tanks), and wellfields. Xu and Usher affirm that: 

‘groundwater vulnerability in the urban areas of Africa is a pressing 

problem that urgently needs to be addressed’. MacDonald et al. (2012), 

affirms that the vast majority of urban centres, and in particular urban 

growth hotspots in the Lake Victoria Basin and much of West Africa 

are underlain by high vulnerability aquifers, and are often of 

moderate-low productivity. Indeed, the high population densities 

found in urban areas has led to the proliferation of unimproved 

sanitation provision largely through the use of pit latrines, which are 

often little more than a hole in the ground, and are in very close 

proximity to wells and springs that are important for domestic use 

(Stenström, 1996 cited in Lapworth et al. 2017). According to World 

Bank (2012),urban sanitation provision and waste management 

systems across SSA are inadequate, with an estimated average of 40 % 

coverage for improved sanitation facilities. 
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Overexploitation and contamination are the two main threats to 

groundwater in Africa (MacDonald et al. 2013). According to Xu and 

Usher (2006), the major issues of water quality in Africa can be listed 

in order of importance as follows: (1) nitrate pollution, (2) pathogenic 

agents, (3) organic pollution, (4) salinization, and (5) acid mine 

drainage. In light of these local studies, Xu and Usher conclude that 

groundwater supplies in Africa are increasingly threatened by human 

activities, resulting in pollution of groundwater resources, incorrect 

exploitation and utilisation of aquifers, and abstraction facilities 

(boreholes or wells) being vandalised. They add that ‘degradation of 

groundwater is one of the most serious water resources problems in 

Africa’. The occurrence of emerging organic contaminants within 

aquatic environments in Africa is currently unknown (Sorensen et al., 

2015a). As population increases and economic development occurs in 

Africa, it is likely that a wider range of emerging contaminants will be 

released into the environment.  Shallow groundwater sources on the 

continent are particularly important as local sources of drinking water 

but are at the same time potentially very vulnerable to anthropogenic 

contamination (Howard et al., 2003; Cronin et al., 2006; Nkhuwa et al., 

2006; Kulabako et al., 2007). Nitrate contamination of groundwater 

tends to increases in many African aquifers (Spalding and Exner, 1993; 

Puckett et al., 2011).  

While groundwater plays a large role in supporting social and 

economic development in Africa, the resource base is far from being 

adequately understood in such a context, which faces several threats. 

There is therefore a need to understand all the potential risks to 

groundwater resources, in particular the occurrence and sources of 

nitrate at the pan-African scale. To this regard, we address this 

significant knowledge gap by developing tools to map groundwater 

quality and degradation risk at the African scale. Protecting 

groundwater sources is becoming a widespread global concern, 

particularly in the African context, and it is more important than ever 

to develop more sustainable practices for the management and 
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efficient use of groundwater resources, as well as to protect the 

environmental ecosystems where such resources are located. A holistic 

approach is required for the management and protection of 

groundwater resources.  

 

1.3 Research objectives  

The overall aim of this thesis is to improve our understanding of 

groundwater quality at the continental scale for Africa, supporting the 

monitoring of the implementation of the UN Sustainable Development 

Goals agenda. This research has mainly been based on spatially best 

available database comes from many parts of the world. The first 

contribution of this thesis is the scope of the region covered: it is the 

first time this kind of study has been undertaken at the pan-African 

scale. However, the study has to cope with limits imposed by relative 

data scarcity, even though nitrate is often the best monitored NPS. 

Many authors have highlighted the data availability problem in Africa. 

Indeed, Adelana and MacDonald (2008) have found that there is a lack 

of systematic data and information on groundwater monitoring across 

Sub-Saharan Africa, with studies occurring on an ad-hoc basis and 

without strategic oversight or coordination (cited in Pavelic et al.,2012). 

In the study entitled ‘Monitoring groundwater use in Sub-Saharan Africa: 

issues and challenges’, Adelana (2009), mentions that: ‘modelling 

groundwater management scenarios suffers from a paucity of reliable 

data with which to calibrate and validate numerical models’. Other 

authors, such as Allaire, (2009) and Foster et al. (2006), find that 

groundwater monitoring is limited or absent, and that groundwater 

monitoring systems for gathering, collating and analysing information 

have failed in several countries, despite numerous amounts of wells 

drilled each year, which present a significant opportunity. The 

availability and reliability of water resources data has been a problem 

for many decades across sub-Saharan Africa (Robins et al., 2006; Carter 

and Bevan, 2008). According to Pavelic et al. (2012), data still remains 
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scarce and the information that is gathered is being done in an 

unsystematic manner. Recently, Comte et al. (2016) affirms that 

groundwater information services (i.e. databases) and systematic long-

term monitoring are non-existent or fragmented and of inadequate 

quality. Adelana and MacDonald (2008) argue that the reasons behind 

this are numerous and complex, including lack of clear institutional 

arrangements and responsibilities, inadequate resourcing, lack of 

technical expertise, and the absence of (or disconnection from) 

database management and retrieval systems.  

In spite of this context of data scarcity, this Ph.D. thesis seeks to achieve 

the following key objectives.  

The first main objective is to map the vulnerability of groundwater to 

water quality degradation at the continental scale.  This first main 

objective will be reached by addressing these specific steps: 

 To build a best available pan-African hydrogeological 

geodatabase; 

 To estimate the intrinsic vulnerability of groundwater at the 

pan-African scale using the standard DRASTIC method; 

 To map groundwater’s vulnerability to pollution at the pan-

African scale using actual, high-resolution land cover/land use 

data, and;  

 To validate groundwater vulnerability map using a nitrate 

meta-database compiled through meta-analysis of the available 

literature. 

The second main objective of the thesis is to identify the environmental 

factors contributing to the nitrate degradation of groundwater. This 

second main objective will be reached by addressing the following 

specific steps: 

 To use the power of meta-analysis, to  build a pan-African 

database groundwater pollution by nitrates; 
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 To use this meta-database to develop an exploratory linear 

statistical model of nitrate degradation of groundwater in 

terms of driving attributes available in the best available 

database;  

 To use the same database to develop a machine-learning 

method and compare it with a statistical linear model;  and  

The third main objective is to validate both approaches using detailed 

datasets collected at the level of some African countries.  

The fourth and last main objective in this thesis is to integrate time 

dimension in the modelling approach to better understand the 

relationships between groundwater pollution risk and time dynamic 

variables of this pollution risk such as land use. To achieve this main 

objective of the assessment of dynamic behaviour of groundwater 

pollution risk at the continental scale, we used the DRASTIC model 

defined in the first objective of the thesis. 

It is essential to test and improve our ability to scientifically assess 

potential groundwater contamination by nitrates. By developing an 

objective vulnerability model that includes the most important factors 

affecting the vulnerability of groundwater to nitrate pollution, this 

study will support efforts to protect public water supplies in areas of 

high or rising groundwater nitrate levels. The developed methodology 

(the tool) will be used to evaluate groundwater vulnerability to nitrate 

pollution at the pan-African scale.  

 

1.5 Contributions of the study 

The study makes the following contributions to the existing literature 

on groundwater quality and vulnerability: 

1) The study attempts reaching the above mentioned objectives 

by compiling, at the pan-African scale, the most recent 

environmental data, relating to groundwater degradation and 
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its driving factors, in particular, climate, topography, land 

cover/land use, (hydro-)geology, and population density; 

2) The study provides insights at the African scale into the spatial 

variation of groundwater vulnerability to pollution, together 

with an examination of the environmental factors that 

influence this vulnerability; 

3) The study offers two statistical models (linear and nonlinear 

algorithms) that can be used to explain observed nitrate 

concentration in groundwater at the African scale, and;  

4) The study attempt to validate the continental scale model for 

groundwater diffusion pollution using regional datasets.  

5) In addition, we developed a new approach to assess the 

dynamic aspect of groundwater vulnerability to pollution risk 

at the continental scale of Africa. 

 

1.6 Outline of the thesis 

With the exception of general introduction, Chapter 1, Chapter 2 and 

general conclusion, this thesis is based on articles published or 

submitted to international peer-reviewed journals. This may in some 

cases lead to repetitions in the text; however, in this way the different 

chapters of the thesis may be read independently. 

 

The general introduction outlines the research problem and presents 

our objectives have been summarized in Chapter 1. 

 

Chapter 2, entitled “Literature Review”, gives an overview of some 

main concepts associated with groundwater vulnerability and 

pollution risk; nitrate sources and issues; review of nitrate assessment 

at continental and regional scale, and scale problem in environmental 

sciences. 
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Chapter 3 describes the main features of the study area, i.e. 

topography, climate and rainfall, drainage, land use, vegetation, 

geology and hydrogeology, and groundwater resources. 

 

In Chapter 4, the main components of DRASTIC approach are 

presented. This chapter delineates the different steps undertaken to 

map the vulnerability of groundwater to pollution using the DRASTIC 

index—a mapping which is based on environmental high-resolution 

data collected in many parts of the world. 

 

Chapter 5 is concerned with a statistical modelling of nitrate 

concentration. In this chapter, a meta-database based on the available 

literature was constructed by using the power of meta-analysis. We 

investigate, using simple models, the potential effects of 

environmental attributes on the assessment of groundwater 

vulnerability. 

 

Chapter 6 explores the same concepts and uses the same meta-

database as Chapter 4, in order to compare nonlinear random forest 

regression and multiple linear regression techniques. This is done in order 

to explain and predict groundwater nitrate concentration in African 

groundwater. 

 

In Chapter 7, we apply the same nonlinear random forest methodology 

with a higher number of nitrate datasets from three countries. We then 

examine and discuss the validity at the country level of the continental 

scale model of groundwater quality. 

 

In Chapter 8, the dynamic aspects of vulnerability to pollution for the 

African continent is elaborated through three risk maps realized, for 

three different years. 
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The last part of this thesis concludes with a synthetic view of the main 

findings of the thesis into Chapter 9. The principal contributions of the 

thesis are presented, as well as their implications for scientific research 

and decision-making, as well as the limitations and perspectives for 

future research. 

 

 

 

 

 

 

 

 

Figure 1-1: Flowchart of the thesis 
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2.1 Introduction  

Groundwater pollution has negatively impacted the safe use of water 

resources around the world (Aljazzar, 2010). There are different 

sources and types of pollutants that could occur on the land surface 

due to a wide range of human activities according to Aljazzar (2010). 

These pollutants can potentially migrate towards and pollute 

groundwater. Thus, groundwater pollution (or groundwater 

contamination) is defined as an undesirable change in groundwater 

quality resulting from human activities (Harter, 2003). The same 

definition was given by Aljazzar (2010) “groundwater pollution or 

contamination is defined as any adverse change in groundwater 

quality”. According to this author, these changes impair water quality 

to the extent it does not meet health and environmental standards. 

Such undesirable change in groundwater quality results from natural 

environmental agents or human (anthropogenic) activities. Therefore, 

groundwater vulnerability studies are crucial to understand the cause-

effect relation between groundwater quality and both natural and 

anthropogenic factors to develop effective groundwater protection 

plans (Stevenazzi et al.2015). A number of methods for predicting 

groundwater vulnerability have been developed (NRC, 1993; Barber et 

al., 1993; Vrba and Zaporozec, 1994).  Barber et al. (1993) subdivided 

the different approaches into empirical, deterministic, probabilistic 

and stochastic methods (Table 2.1). 
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Table 2-1: Examples of different approaches to vulnerability assessment (Barber et al., 1993) 

Type of assessment  Scale of Application  Pollution Hazard  
Example 

Identifier  
Reference  

Empirical  

Local  

Local  

Regional & Local  

Regional  

Regional/National  

UST -petroleum  

Landfill leachate  

Universal  

Universal  

Universal  

Aldicarb  

MATRIX  

LeGrand  

DRASTIC  

GOD  

Oregon DEQ, 1991  

LeGrand, 1983  

Aller et al., 1985  

Foster, 1987  

NRA, 1991  

Lorber et al. 1989  

Deterministic  
Local/regional  

Regional  

Specific pollutants  

Pesticides  
LPI  

Bachmat & Collin, 

1987  

Meeks and Dean, 

1990  

Combined Empirical 

Deterministic  

Regional  

Regional  

Pesticides  

Pesticides  

DRASTIC-

CLMS  

DRASTIC-

PRZM  

Ehteshami et al. 

1991 ;  

Banton & 

Villeneuve, 1989  

Probabilistic  Regional  Pesticides  VULPEST  
Villeneuve et al., 

1990  

Stochastic  

Regional  

Regional possible 

National  

Pesticides  

Universal/ 

Pesticides  

Discriminant  

Analysis 

weight of 

evidence 

models  

Teso, 1989  

New LWRRC 

project  
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2.2 Groundwater vulnerability 

The term “vulnerability” is generally used to describe how a certain 

system is sensitive to any kind of perturbation or stress (Sorichetta, 

2010). As stated by Sorichetta (2010), vulnerability can be 

conceptualized in different ways in different fields, or even within the 

same field (Füssel, 2007). Furthermore, it can be identified for a given 

system exposed to a specific hazard or to a group of hazards (Brooks, 

2003). According to WHO (2006), when considering an aquifer system 

exposed to a potential source of contamination, the concept of 

vulnerability has to be derived from the assumption that soil and 

aquifer characteristics may provide some degree of protection, 

especially against sources located on the land surface. 

2.3 Definitions of groundwater vulnerability 

One of the first definitions of groundwater/aquifer vulnerability found 

in the literature has been proposed by Albinet and Margat (1970). It is 

described as “the penetrating and spreading abilities of the pollutants 

in aquifers according to the nature of the surface layers and the 

hydrogeological conditions”. Since then, the concept of groundwater 

vulnerability has considerably evolved (Popescu et al., 2008). 

Nowadays, different definitions of groundwater vulnerability are now 

available in the literature. The concept is commonly used and widely 

applied to assess protection potential of aquifer systems all over the 

world (Aljazzar, 2010). It is important to be aware that a clear 

distinction between intrinsic and specific vulnerability is not always 

possible (NRC, 1993). Some examples to illustrate the diversity in 

terminology may create a better idea of what can be meant by the 

vulnerability (After Gogu, 2000, and NRC, 1993). 
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Civita (1987) 

Intrinsic (i.e., natural) aquifer vulnerability to contamination is the 

specific susceptibility of aquifer systems, in their parts, geometric and 

hydrodynamic settings, to receive and diffuse fluid and/or hydro-

vectored contaminants, the impact of which, of the groundwater 

quality, is a function of space and time”. 

 

Foster (1987) 

Aquifer pollution vulnerability is the intrinsic characteristic which 

determine the sensitivity of various parts of an aquifer to being 

adversely affected by an imposed contaminant load. 

Ground water pollution risk is the interaction between the natural 

vulnerability of the aquifer, and pollution loading that is, or will be 

applied to the subsurface environment as a result of human activity. 

 

Pettyjohn et al. (1991) 

Aquifer vulnerability is the geology of the physical system that 

determines vulnerability. 

Aquifer sensitivity is related to the potential for contamination. That 

is an aquifer that have a high degree of vulnerability are in areas of 

high population density, are considered to be most sensitive… 

 

U.S. Environmental Protection Agency (1993) 

Aquifer sensitivity is the relative ease with which a contaminant (in 

this case a pesticide) applied on or near the land surface can migrate to 

the aquifer of interest. Aquifer sensitivity is a function of the intrinsic 

characteristics of the geologic materials of interest, any overlying 

saturated materials, and the overlying unsaturated zone. Sensitivity is 

not dependent on agronomic practices or pesticide characteristics. 

Ground water vulnerability is the relative ease with which a 

contaminant (in this case a pesticide) applied on or near the land 

surface can migrate to the aquifer of interest under a given set of 
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agronomic management practices, pesticide characteristics, and 

hydrogeologic sensitivity conditions. 

 

United States National Research Centre for Assessing Ground Water 

Vulnerability (NRC, 1993) 

Ground water vulnerability to contamination is the tendency or 

likelihood for contaminants to reach a specified position in the 

groundwater system after introduction at some location above the 

upper most aquifer. 

Specific vulnerability is used when a vulnerability is referenced to a 

specific contaminant class or human activity. 

Intrinsic vulnerability refers to vulnerability determined without 

consideration of the attributes and behavior of particular 

contaminants. 

 

Robins et al. (1994) 

Aquifer vulnerability would thus be a function of the intrinsic 

properties of the overlaying soil and rock column or unsaturated zone 

of the aquifer, with the risk of groundwater pollution dependent on 

the interaction of the natural aquifer vulnerability and the subsurface 

contaminant load imposed by human activity. 

 

International Association of Hydrogeologists (Vrba and Zaporozec, 1994)  

Vulnerability is an intrinsic property of a groundwater system, 

depending on the sensitivity of that system to human and/or natural 

impacts.  

Intrinsic vulnerability (natural), is the vulnerability defined solely as 

a function of hydrogeological factors, the characteristics of an aquifer 

and the overlaying soil and geological materials. 
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Most recently, the working group of the European COST Action 620 (EU, 

2003), Vulnerability and risk mapping for the protection of carbonates (karst) 

aquifers 

 

Intrinsic vulnerability is the term used to define the vulnerability of 

groundwater to contaminants generated by human activities. It takes 

into account the inherent geological, hydrological and hydrogeological 

characteristics of an area, but is independent of the nature of the 

contaminants and the contamination.  

Specific vulnerability is the term used to define the vulnerability of 

groundwater to a particular or group of contaminants. It takes into 

account the properties of a particular contaminant or group of 

contaminants and its (their) relationship(s) to the various aspects of the 

intrinsic vulnerability. 

 

Thus, according to Sorichetta (2010) from a practical point of view, in 

absence of a standard and unanimously accepted definition, when 

performing a groundwater vulnerability assessment it is extremely 

important to: 

 carefully establish the objectives that must be achieved;  

  explicitly refer to the definition of groundwater vulnerability 

to be used;  

 select the proper assessment method according to the 

established objectives and the adopted definition. 

 

This is done in order to avoid mis- interpretation of the results and a 

consequently improper use of them. 

In this thesis, groundwater pollution risk is limited to the Foster (1987) 

definition presented above by considering the human aspects (e.g. 

human activity) that could be affected intrinsic groundwater 

vulnerability. Furthermore, the definitions given by NRC (1993), and 

EU (2003) can be found in the thesis. In addition, the term “pressure” 
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is used in this research to describe human activities which contribute 

to groundwater quality deterioration.  

Finally, the definition of groundwater quality is presented in Box 1 

(Harter, 2003) and the difference between groundwater contamination 

and pollution is illustrated in Box 2 (Zhou et al. 2015). 

 

 

Box 1. Groundwater quality (Harter, 2003) 

Groundwater quality comprises the physical, chemical, and 

biological qualities of ground water. Temperature, turbidity, color, 

taste, and odor make up the list of physical water quality 

parameters. Since most ground water is colorless, odorless, and 

without specific taste, we are typically most concerned with its 

chemical and biological qualities. Although spring water or 

groundwater products are often sold as “pure,” their water quality 

is different from that of pure water. 

  



30 

Box 2. The difference between groundwater contamination and 

pollution (Zhou et al.2015) 

Although the terms contamination and pollution are often used 

interchangeably in colloquial speech, they are distinct 

environmental concepts. 

Contamination is simply the presence of a substance that is normally 

not present or at a concentration above natural background level. 

When contamination reaches a level that results in or can causing 

negative biological effects to resident communities it becomes 

pollution (Chapman, 2007). All pollutants are contaminants, 

however, not all contaminants are pollutants.  

Pollution can produce highly damage or disturb ecosystem while 

contaminant should be supported by the system without stopping 

general life cycle. 

There are many different reasons causing groundwater pollution, 

which is important to clarify two broad categories, “point source” - 

occurs when harmful substances are emitted directly into a body of 

water and “non-point source”- delivers pollutants indirectly 

through transport or environmental change. 

 

2.4 Nitrogen sources and  pollution  

Nitrogen is a major constituent of the earth’s atmosphere and is one of 

the most important vital elements without which organisms cannot 

survive (Delgado, 2002). It is naturally part of the environment. The 

major nitrogen source is the atmosphere, as it represents more than 

two thirds of the extent of the atmosphere (Aljazzar, 2010). Zhou et al. 

(2015) argue that nitrate contamination in groundwater systems is 

caused by various processes and sources. The author adds that 

identifying the various sources of nitrate contamination and 

understanding system dynamics is fundamental to address 

groundwater quality problems. Nitrate is the most highly oxidized 

form of nitrogen in the nitrogen cycle, which includes activities in the 
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atmosphere, hydrosphere, and biosphere (Evans and Maidment, 1995). 

Thus, understanding the nitrogen cycle is also an important approach 

to study nitrate behavior in subsurface system. Figure 2-1 shows the 

major transformations from the nitrogen cycle (Madison and Brunett, 

1985 cited by Evans and Maidment, 1995): (i) Assimilation of inorganic 

forms of nitrogen (ammonia and nitrate) by plants and 

microorganisms;  (ii) Heterotrophic conversion of organic nitrogen 

from one organism to another; (iii) Ammonification of organic 

nitrogen to produce ammonia during the decomposition of organic 

matter; (iv) Nitrification of ammonia to nitrate and nitrite by the 

chemical process of oxidation; (v) Denitrification (bacterial reduction) 

of nitrate to nitrous oxide (N2O) and molecular nitrogen (N2) under 

anoxic conditions, and (vi) Fixation of nitrogen (reduction of nitrogen 

gas to ammonia and organic nitrogen) by microorganisms.  
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Figure 2-1: Simplified biological nitrogen cycle (Madison and Brunett, 1985) 

 

Nitrate occurs naturally from mineral sources and animal wastes, and 

anthropogenically as a by product of agriculture and from human 

wastes (Evans and Maidment, 1995). The potential sources of nitrate 

can be divided into two main groups, naturally occurring and human-

induced sources (Boy-Roura, 2013). These two groups also can be 

divided into two main categories, nonpoint (diffuse) and point-source 

pollution (Boy-Roura, 2013). 

Natural sources of nitrogen:  Natural nitrate or nitrogen levels in 

groundwater are generally very low (typically less than 10 mg/l as 

NO3; EAA, 1999). These concentrations of natural levels can be 
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expected high and to be entirely caused by human activities, such as 

agriculture, industry, domestic effluents and emissions from 

combustion engines. 

Anthropogenic nitrogen sources: Human activities related sources of 

nutrients can be groups into:  

 Point sources (Non-Diffuse): the position of the release point 

can be identified. These sources are normally regulated by laws 

that place limits on the types and amounts of contaminants that 

can be released to water.  

 Non-point (or Diffuse) sources: the local effect cannot be well 

tracked back to the source, or for which the source is 

characterize by a large geographical spread. Limiting nutrients 

from non-point sources is challenging because these sources 

are widespread and thus more difficult to identify and quantify 

than point sources. 

Agricultural fertilizers application is the largest nonpoint source 

pollution affecting groundwater quality (Zhou et al. 2015). According 

to Aljazzar (2010), nitrate is an effective fertilizer and is used in 

agricultural activities due to the use of fertilizers and manure 

application. Many studies have shown that agricultural activities are a 

significant source of surface and ground water pollution due to long-

term and excessive fertilizer use (Zhang et al.1995; Hudak, 2000). For 

example, as stated by Line et al. (1998), agricultural activities 

contributed to approximately 75 % of non-point pollution, which 

accounted for approximately two-thirds of the total pollution, in the 

United States (cited in Wang et al. 2015). Agriculture is the major 

source of nitrate, but it is not the only one (Aljazzar, 2010). There are 

several studies which showed a strong association between nitrate 

concentrations in groundwater and the above soil layers and land use 

categories including different agricultural activities, urban areas, and 

landfills (Aljazzar, 2010).  Some studies in the few last years, have 

found that nitrate concentrations in groundwater in some urban 
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aquifers are similar or even higher to those in their agricultural areas 

(Ford and Tellam, 1994; Lerner et al., 1999, cited in Aljazzar, 2010). This 

author Aljazzar (2010) affirm that there are several sources including 

sewage and remains leakage, septic tanks, industrial spillages, 

contaminated land, landfills, river or channel infiltration, fertilizers 

used in gardens, house building, storm water and direct recharge. 

Furthermore, the authors Madison and Brunett (1985) list the following 

as major anthropogenic sources of nitrate: "fertilizers, septic tank 

drainage, feedlots, dairy and poultry farming, land disposal of 

municipal and industrial wastes, dry cultivation of mineralized soils, 

and the leaching of soil as the result of the application of irrigation 

water." Natural sources include: "soil nitrogen, nitrogen-rich geologic 

deposits, and atmospheric deposition."   

Also, many studies through the world were focused vulnerability of 

soil and groundwater to pollutants, on impact of agricultural activities 

on groundwater, impact of agriculture activities on groundwater, risk 

of groundwater pollution in developping countries (The 

Duijvenbooden and Waegeningh, 1987;  Vrbaand Romijn, 1986; IHP, 

1998; IAH, 1982; Foster, 1986; Lewis et al.1980; Egboka et al.1989). 

Independently to these few major studies on groundwater 

vulnerability and pollution cited. There are several studies which 

showed a strong association between nitrate concentrations in 

groundwater and the above soil layers and land use categories 

including different agricultural activities, urban areas, and landfills. 

Examples of previous studies related to nitrate sources from different 

reference through the World and available in the literature are:  

Andersen and Kristiansen, 1984; Baker, 1992; Singh et al., 1995; Postma 

et al., 1991; Ling and Al-Kadi, 1998; Joosten et al., 1998.   

Table 2 provides a summary of the different sources of nitrate 

independently of authors (modified from Aljazzar, 2010); while Table 

3 provides a summary of the major sources of groundwater pollution 

with a description of some of their health risks (Sililo et al. 2001). 
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Table 2-2: Sources of nitrate in soil and groundwater (modified from Aljazzar, 2010) 

Sources             Diffuse (Non-Point sources)            Non-Diffuse (Point sources) 

Natural 

 Dissolution of minerals from soil or 

geologic formations 

 N atmospheric deposition 

 N-rich effluent discharge from 

groundwater baseflow to rivers 

 N-rich effluent discharge from springs to 

rivers 

Agriculture 

 Use of industrial fertilizers 

 Use of organic fertilizers (manure and 

slurries) 

 House animals and animals used in 

agriculture field 

 Accidental spills of nitrogen-rich 

compounds 

 Absence or leakage of slurry and manure 

storage facilities 

Domestic 

 Combustion engines in vehicles 

 Improper disposal of municipal effluents 

of wastewater, sludge and solid wastes 

 Old and badly designed landfills 

 Septic tanks and leakage from sewage 

systems 

Industry 

 Atmospheric emissions from energy 

production 

 Combustion engines in vehicles 

 Disposal of effluents by sludge on fields 

 Disposal of nitrogen-rich wastes using 

well-injection techniques 

 Old and badly designed industrial-waste 

landfills 
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Table 2-3: Main sources of groundwater pollution with some of their main 

characteristics (Sililo et al.2001) 

Pollution 

category 

Pollution 

source 
Main Pollutant Potential impact 

Municipal Sewer leakage Nitrate 

Viruses and 

Bacteria 

Health risk to users, 

eutrophication of water 

bodies, odour and taste Septic tanks, 

cesspools, 

privies 

Sewage 

effluent and 

sludge 

Nitrate, 

Minerals, 

Organic 

compounds, 

Viruses and 

Bacteria 

Storm water 

runoff 

Bacteria and 

Viruses  

Health risk to water 

users 

Landfills 

Inorganic 

minerals, 

Organic 

compounds, 

Heavy metals, 

Bacteria and 

Viruses 

Health risk to water 

users, eutrophication of 

water bodies, odour 

and taste 

Cemeteries 
Nitrate, Viruses 

and Bacteria 

Health risk to water 

users 

Agriculture 

Feedlot wastes 

Nitrate-

nitrogen-

ammonia, 

Viruses and 

Bacteria 

Health risk to water 

users (e.g. 

Methemoglobinemia) 

Pesticides and 

herbicides 

Organic 

compounds 

Toxic/Carcinogenic 

Fertilisers 
Nitrogen, 

Phosphorous 

Eutrophication of water 

bodies. 

Leached salts 
Dissolved salts Increased TDS in 

groundwater 
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Pollution 

category 

Pollution 

source 
Main Pollutant Potential impact 

Industrial Process water 

and plant 

effluent 

Organic 

Compounds 

Heavy metals 

Carcinogens and toxic 

elements (As, Cn) 

Industrial 

landfills 

Inorganic 

minerals, 

Organic 

compounds, 

Heavy metals, 

Bacteria and 

Viruses 

Health risk to water 

users, 

eutrophication of water 

bodies, odour and taste 

Leaking 

storage tanks 

(e.g. petrol 

stations) 

Hydrocarbons, 

Heavy Metals 

Odour and taste 

Chemical 

transport 

Hydrocarbons, 

chemicals 

Carcinogens and toxic 

compounds 

Pipeline leaks 

Atmospheric 

Deposition 

Coal fired 

power stations 

Acidic 

precipitation 

Acidification of 

groundwater and toxic 

leached heavy metals 
Vehicle 

emissions 

Mining Mine tailing 

&stockpiles 

Acid Drainage 

Dewatering of 

Mine shafts 

Salinity, 

Inorganic 

compounds, 

Metals 

May increase 

concentrations of some 

compounds to toxic 

levels. 

Groundwater 

Development 
Salt Water 

Intrusion 

Inorganic 

minerals 

Dissolved salts 

Steady water quality 

deterioration 
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2.5 Nitrate: health and environmental impacts  

We present in this section a brief review of NO3- in groundwater, 

relevant to the present study, rather than a comprehensive review of 

the extensive literature available on NO3- in groundwater. NO3- is the 

most widespread contaminant among all inorganic constituents of 

health significance (Kumarasamy, 2007). In many parts of the world, 

groundwater is the single most important supply for the production of 

drinking water, particularly in areas with limited or polluted surface 

water sources (Schmoll et al. 2006). According to Boy-Roura (2013), 

nitrate in groundwater has two major problems and risks. On one 

hand, nitrate pollution poses a recognized risk for its use as drinking 

water; while on the other hand, excessive nutrient loads can lead to the 

deterioration of ecosystems. Nitrate is a common surface water and 

groundwater contaminant that cause health problems in infants and 

animals, as well as eutrophication in surface waters (cited in Fennessy 

and Cronk, 1997). 

Health concern  

Nitrate, itself, has a low toxicity at massive doses and is generally of 

no concern with respect to human health (Aljazzar, 2010). High levels 

of nitrate in drinking water are associated with adverse health effects 

(Boy-Roura, 2013). In others words, excessive levels of nitrate in 

drinking water can produce negative health impacts on human well-

being. Thus, the immediate health concern is the reduction 

(conversion) of nitrate to nitrite in the digestive tract by nitrate 

reducing bacteria (Aljazzar, 2010).  This author adds that nitrite is 

readily absorbed into the blood where it combines with the 

hemoglobin that carries oxygen. It forms methaemoglobin, which 

cannot carry oxygen. The reduced oxygen supply to the body tissues 

produces physical stress. When severe enough, nitrate poisoning is life 

threatening because of suffocation. This condition is called 

methemoglobinemia, or blue baby syndrome, in infants (Knobeloch et 
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al. 2000), because of blue color or blue-grey around eyes and mouth. 

The authors such as Curry (1982); White and Weiss (1991) affirms that 

nitrate is therefore directly linked to the blue-baby syndrome, the case 

in which human blood is not able to carry oxygen. Infants, human and 

animals (such as cattle, horses, sheep, baby pigs, and baby chickens), 

are the most susceptible to nitrate poisoning because bacteria that 

convert nitrate to nitrite are abundant in their digestive systems 

(Aljazzar, 2010). Boy-Roura (2013) affirms that animals may also be 

affected by high nitrate concentrations in drinking water.  For example, 

nitrate poisoning of cattle has resulted in devastating losses across 

southern Africa as stated in Limpopo River Awareness Kit in Website.  

In year 2000, 356 heads of cattle died on Ghanzi River in the Ghanzi-

Karakubis area in Botswana.   Nitrate levels have been detected above 

500 mg/L in the southern Kalahari. (See two photos in below). 

http://www.limpopo.riverawarenesskit.org (Accessed online October 

29th 2017). 

However, according to Aljazzar (2010) the syndromes of blue baby are 

rarely observed in adults where the low gastric acidity and the high-

active enzymes inhibit nitrate-reducing bacteria. But, the author 

Aljazzar (2000) affirms that The Britain Royal Commission on 

Environmental Pollution has documented the last ten cases of blue-

baby syndrome occurred in the United Kingdom (UK) in 1979, one of 

them was fatal. According to Croll and Hayes (1988), no cases occurred 

after that where nitrate concentration in drinking water were less than 

100 mg/L. Ferrant (1946) observed two case of methemoglobinemia in 

newborn infants were recorded in Belgium and appeared to be caused 

by high nitrate level in the well water used for the dilution of 

powdered milk. Still, according to Aljazzar (2010), nitrate in 

groundwater is a serious problem in Gaza Strip. Indeed, after the study 

of Al-Absi (2008) to investigate blue baby cases in this region of Gaza, 

the experimental results indicated that the prevalence of 

methemoglobinemia is very high and more than 70 % of the tested 

infants were suffering from a blue-baby syndrome. 

http://www.limpopo.riverawarenesskit.org/
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The relationship between nitrate levels in drinking water and cancer 

has been inconclusive (Aljazzar, 2010). However, this author declares 

that nitrogen-nitrosamine compounds are some of the strongest 

known carcinogens. Jalali (2005) argues that they have been found to 

induce cancer in variety of organs in various animal species including 

higher primates. Almasri and Kaluarachchi (2004) affirm that 

therefore, nitrates may also have a possible role as procarcinogenics. 

Yang et al. (2007) showed that there was no significant association 

between nitrate concentration in drinking water and the risk of death 

from colon cancer. Despite many uncertainties regarding the 

association of nitrate intake and cancer (Zeegers et al., 2006), nitrate in 

drinking water is still considered as a risk factor says Aljazzar (2010). 

Because, certain authors such as Clough (1983); Weyer (2001) found 

that intensive experimental data suggests a role for nitrate in the 

formation of carcinogenic N-nitrosamines and stated that high 

concentration of nitrate in drinking water can not be excluded as a 

factor in analysing gastric cancer. Moreover, Gulis et al. (2002) found a 

positive correlation between nitrate concentration in drinking water 

and colorectal cancer has been found Trnava District in Slovakia. To 

conclude, as stated in Zhou et al.(2015), long term exposure to high 

nitrate levels in drinking water has been found in some studies to be a 

 Photo 2: Tock losses from nitrate 

poisoning have been significant across 

the western (Botswana) and southern 

(South Africa) portions of the basin. 

(From Prozesky 2000). 

Photo 1: A heifer in Botswana killed by 

nitrate poisoning from contaminated 

groundwater (From Prozesky 2000) 
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risk factor for several types of cancer including gastric, colorectal, 

bladder, urothelial and brain tumor (CDPH, 2013). 

Environmental and social concerns 

Water quality is a major concern throughout the world.  High levels of 

nitrate in water are also of environmental. Many aquifers discharge or 

are in hydraulic continuity with rives reaching coastal areas or surface 

water bodies as wetlands, where important nutrients loads can lead to 

eutrophication (Boy-Roura, 2013). Elevated nitrate concentrations may 

lead to excessive algal growth, which can cause oxygen deficiencies 

causing fish kills, toxic algal blooms and a general decrease in 

biodiversity (EEA, 1999). 

All problems mentioned in above related to nitrate pollution have 

implied an organized concern about this potential health hazard 

among local citizens. According to Boy-Roura (2013), since the mid-

80’s, agricultural pollution has become on the most prominent 

environmental issues at the European Union and public opinion 

regards agriculture as one of the most environmental disruptive social 

activities. As a result, the pressures on farmers to decrease pollution 

and achieve higher environmental standard were reinforced (Izcara et 

al., 2002). The implementation of different European directives 

regarding water quality, setting legal standards for a range of water 

quality parameters was the result of these social pressures. 

Furthermore, financial costs are also social concern associated with 

poor water quality. Indeed, nitrate pollution in groundwater implies 

additional drinking water treatment, construction for new wells, 

monitoring, and other safe drinking water actions. 

Certain authors such as Auréli and Brelet (2004); and Asmal (2004) 

investigated some aspects of water resources in relation to social and 

environmental problems not with nitrate impact but focus on water 

and ethics. They concerned with the ethical issues arising from the 

special role of women in social and environmental issues, and water in 

civil society. 
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2.6 Review of global and regional nitrogen and nitrate 

assessment maps 

In this section, we present several maps developed at global and 

regional scale related to nitrate contamination in groundwater. Most 

of the review of nitrate and nitrogen assessment maps can be find in 

Zhou et al. (2015). Figure 2-2 showed the global map with high nitrate 

in groundwater produced by IGRAC in 2012. According to Zhou et al. 

(2015), this map was based on a literature study and demonstrated the 

percentage of regions with high nitrate contamination in the world. 

However, one drawback of this map is that the legend is of qualitative 

range, without specifying quantitative definition for “high nitrate”, 

“many” and “few” (Zhou et al.2015). 

 

 

Figure 2-2: Global map with the presence of zones with high nitrate in groundwater 

(from IGRAC 2012, cited in Zhou et al. 2015) 
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Figure 2-3 present the global aquifer vulnerability map developed by 

Zhou et al. (2015) using GOD method. Index based methodologies 

such as GOD utilize Multi-criteria decision making (MCDM) 

approaches to define aquifer vulnerability. The method was developed 

by Foster in 1987, and used three variables, where: G is Groundwater 

occurrence; O is Overall aquifer class; and D is Depth to the 

groundwater table. By collecting the data points that represents the 

nitrate concentration in certain region of several countries, Zhou et al. 

(2015) show on Figure 2-4 the spatial distribution of nitrate level in 

groundwater through the world. According to the authors, the data 

collected represent only the nitrate level in the local regional 

groundwater system. 

 

 
Figure 2-3: Vulnerability map of the main transboundary aquifers of the world using 

GOD method (Zhou et al.2015) 
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Figure 2-4: Groundwater nitrate concentration in the different regions of the world 

(Zhou et al.2015) 

 

Using nitrate data provides by Federal Institute of Germany coming 

from GEMstat, Zhou et al. (2015) showed the spatial distribution of 

nitrate sampling in the world on Figure 2-5. In recent study published 

by Ascott et al. (2017) on the modelled spatiotemporal distribution of 

nitrate stored in the vadose zone  shows substantial increases between 

1950 and 2000 associated with increased global use of N fertilizers and 

subsequent leaching (see Figure 2-6). The authors affirms that in some 

developed countries, the amount of nitrate stored in the rocks is 

increasing, despite improvements in farming practice and the 

introduction of rules to control the pollutant. Basins in North America, 

China and Central and Eastern Europe have developed large amounts 

of nitrate stored in the vadose zone due to thick vadose zones, slow 

travel times and high nitrate loadings. However, they affirm in 

developing countries, the problem is currently not so severe. But there 

is an urgent need for early intervention to avoid the environmental 

damage experienced by rich countries. 
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Figure 2-5: Groundwater nitrate concentration in the sampling wells around the 

world (Zhou et al.2015) 

 

 

Figure 2-6: Spatial distribution of nitrate stored in the vadose zone. Global vadose 

zone N storage (in kg N ha−1) is shown for 1925 (a), 1950 (b), 1975 (c) and 2000 (d) 

(Ascott et al.2017) 
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Figure 2-7 presents nitrate concentration in groundwater in European 

countries. We observe that the majority of countries show nitrate levels 

higher than 50 mg/L. Zhou et al. (2015) affirms that the data value was 

measured by a number of sampling sites in different countries. 

 

Figure 2-7: Nitrate concentration (NO3- in mg/L) in groundwater at a country level 

(source: EEA, 2002) 

We observed on the Figure 2-8 nitrate-N concentration in groundwater 

for the United States with three classes of values with the legend 

presenting a range greater than 30 ppm who does not give the 

maximum limited nitrate-N value. Figure 2-9 showed the final 

DRASTIC index map of the entire of USA developed by Kumarasamy 

in 2007. This map was developed by addition nitrogen loading as land 

use proxy with the seven environmental variables. We observe five 

classes of vulnerability index. 
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Figure 2-8: Groundwater nitrate-N concentration in United States (Townsend et al. 

2003) 

 

Figure 2-9: Final modified DRASTIC index of groundwater vulnerability map in USA 

(Kumarasamy, 2007) 

 

Figure 2-10 show an overlapped map with nitrogen fertilizer 

application and nitrate levels of sampling wells (Zhou et al. 2015). 

According to the author, each sampling point was computed by 

average level, and high levels of nitrate occurs in India, Afghanistan 

and north part of China. Furthermore, we observe that the majority of 
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points on the map corresponding to the area with high nitrogen 

fertilizer input as stated by Zhou et al. (2015). 

 

 

Figure 2-10: Asia nitrogen fertilizer application and nitrate level in groundwater 

(Zhou et al.2015) 

 

An example of spatial distribution of nitrate concentration in Southern 

Africa region is presented in  Figure 2-11. This regional map represents 

the distribution of nitrate concentration in the groundwater of 

Namibia, Botswana and South Africa. We observe that the highest 

nitrate concentration is found in the central part of these three 

countries, and all spatial distributions of boreholes and wells have a 

nitrate concentration above the WHO standard. To the end, the Figure 

2-12 is a the groundwater vulnerability map of south Africa developed 

by Musekiwa and Majola (2013) using DRASTIC method. 
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Figure 2-11: Groundwater nitrate distribution in southern Africa (Tredoux et al. 2009) 

 

 

Figure 2-12: Vulnerability map of South Africa (Musekiwa and Majola, 2013) 
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2.7 Nitrate vulnerability modelling at the continental 

and regional scale 

Vulnerability maps are typically made at a sub-basin, basin, or regional 

scale and they are not normally used for site-specific assessments 

involving areas smaller than a few tens of square miles (Harter and 

Walker, 2001). According to these two authors, vulnerability maps are 

therefore best used to demonstrate large-scale, regional differences in 

groundwater vulnerability. In spite this usefulness of groundwater 

vulnerability, NRC (1993) affirm that uncertainty is inherent in all 

vulnerability assessments. 

2.7.1 Notions of scale and definition  

In the field of environmental research, the scale issue is often a major 

point of concern. Many different adjectives are used when speaking 

about scale, e.g. cartographic scale, geographic scale, operational scale, 

relative scale or level of resolution (Jenerette and Wu, 2000; Marston, 

2000) or measurement scales, e.g. nominal, ordinal, interval and ratio 

(Abella and Van Westen, 2007). However, in a general sense, scale 

refers to the spatial dimensions at which entities, patterns, and 

processes can be observed and characterized (Marceau, 1999).  

 

2.7.2 Problems of scale  

As stated by Leterme (2006), Beven et al. (1999) identified two 

problems of scale in hydrological modelling: the scale problem and the 

scaling problem. These are defined as follows (Beven et al. 1999): 

The scale problem denotes the expectation that different processes may 

dominate hydrological processes at different scales so that different 

theories and models may be appropriate at different scales. The scaling 

problem denotes the development of a consistent theory that would 

allow a process description at one scale to be formally transformed to 
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represent the hydrological response at a different scale (cited in 

Leterme, 2006). 

 

Scale effects refer to the contrast of information or the different 

characteristics at different scales (Wu and Li, 2009). Model predictions 

at the regional scale are likely to be contaminated by several different 

modelling errors (Donigan and Rao, 1986; NRC, 1993). According to 

Mulla and Addiscott (1999), these errors include modelling structure 

error, experimental data measurement error, model parametrization 

errors and, as mentioned above, scale transitions errors. Errors in model 

structure occur when the process and the assumptions represented by 

the model fail to represent reality. The example could be a model 

which simulates solute transport using the convective dispersive 

equation for a region in which two-region or macropore transport is 

significant. Errors in model parametrization can result from a variety of 

causes. A major source of uncertainty is due to spatial and temporal 

variability. Mulla and Addiscot (1999) affirms that uncertainties in 

model predictions can result from errors in spatial scale transitions. The 

author argues that the first type of scale-transition error occurs when 

the source and sink terms or transport and fate processes operating at 

the scale of the calibration study (at the field scale for example) are 

different from those operating at the prediction scale (e.g., the 

watershed or aquifer scale). An example of problems can occur in 

groundwater modelling, including changes in dispersive or 

transformation processes, geologic influences on transmissivity and 

flow direction, and recharge patterns. The second type of scale-

transition error is due to errors in extrapolation caused by spatial and 

temporal averaging of model parameters (Destouni, 1993), or due to 

bias caused when the calibration site is not representative of the region 

(Beven, 1993). 

For example, in their study entitled "Validation Approaches of Field-, 

Basin-, and Regional-Scale Water Quality Models", Mulla and Addiscott 

(1999), argues that the main limitation of down-scaling approach is 
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that the processes which dominate broad patterns and trends at the 

regional scale may be obscured by other processes that dominate at the 

local scale. According to these authors, an example to illustrate the 

limitations of down-scaling is a description of groundwater 

contamination by nitrate-nitrogen at a regional scale in terms of 

regional patterns in precipitation, depth to groundwater, and soil 

texture. At local scale, variations in nitrate leaching to groundwater 

may more strongly be controlled by management practices such as the 

amount and timing of N fertilizer application than by local variations 

in precipitation, depth to groundwater, or soil texture. To conclude, 

these authors affirm that the rigorous validation of models at the scale 

of large regions, basins or continent is difficult for a variety of reasons: 

part of the difficulty in validating models for large regions is due to the 

challenging issues of model structure, non-linearity, non-uniqueness, 

spatial and temporal variability and scale-transition errors.  

 

2.8 Conclusions  

In this chapter we introduce and discuss issues and concepts that 

further will be used in the thesis.  

We shortly introduce index based methodologies for assessing 

spatially distributed environmental functions. We use multi-criteria 

decision making (MCDM) approaches to assess the spatial distributed 

environmental function related to groundwater vulnerability against 

pollution. Among several MCDM approaches to assess groundwater 

vulnerability, DRASTIC (Aller et al.1987) is a very popular tool. We 

choose the DRASTIC approach due to the lower data requirements 

associated with the approach and its suitability to make large scale 

assessments. To this regard, Honnungar (2009) affirms that the 

DRASTIC approach has proven to be particularly useful for large-scale 

assessments and has been utilized all across the world to delineate 

vulnerability at regional, state and national scales. 
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We also discuss the nitrate in groundwater issue. Indeed, we further 

used in this thesis nitrate as an empirical proxy of groundwater 

vulnerability. Using observations of nitrate pollution of groundwater 

can therefore be used to validate groundwater vulnerability models. 

Erwin and Tesoriero (1997) affirms that nitrate contamination has 

indeed been an indicator of overall groundwater quality (in US. 

Environmental Protection Agency, 1996). Nitrate in drinking water 

resources is further a potential health risk (Erwin and Tesoriero, 1997). 

Recent studies have elucidated the human health risk, such as cancer 

risk, associated with poor groundwater quality (Gao et al. 2012; Fabro 

et al. 2015; Wheeler et al. 2015; Wongsanit et al. 2015). The World 

Health Organization’s guideline has indicated that the ingestion of 

more than 50 mgL-1 nitrate in potable water can be harmful to human 

health (WHO, 2004). 

We finally elaborated on the scale issues when assessing complex 

environmental functions. Scale and scaling issues are indeed of 

paramount importance when framing the different methodologies 

used to assess groundwater vulnerability for pollution.  
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3.1 Regional layout 

Geography is key to understanding any region of the world. The 

African continent accounts for one fifth of the total land area of the 

Earth. It is the second largest of the continents, comprising 54 

countries, of which 47 are in sub-Saharan Africa (SSA), with a wide 

range of hydrological conditions (Groundwater Governance, 2014) 

and differing geographical, economic and cultural characteristics 

(ADB, 2014). The south-east of the continent is largely a high plateau 

country and the north-west mainly consists of plains and shallow river 

basins. The Sahara Desert occupies about half of the continent north of 

the equator. The extreme north and south have a Mediterranean 

climate with winter rain and summer drought. Between the tropics the 

rains are concentrated in the summer months, and near the equator 

they occur in two seasons of the year. According to Ateawung (2010), 

the Africa’ relief is characterised by two broad, elevated regions of 

Eastern and Southern Africa, having an average height of 1015 m 

above sea level. Widely regarded as the place where the human race 

originated, according to ADB (2014), Africa has around 1 billion people 

today and will have an estimated 2.5 billion in 2060. The continent’s 

population has undergone great changes over time, and this changing 

population has in turn altered African landscapes and ecosystems. 

While environmental change is not new to Africa, pace of change has 

accelerated, as it has in many other parts of the world. According to 

Groundwater Governance (2014), it is not always possible to separate 

information about SSA from information for the continent as a whole. 

According to Braune and Adams (2013), politically, SSA consists of all 

African countries that are fully or partially located south of the Sahara 

(excluding Sudan), making up 74 per cent of the continent’s area and 

85 per cent of the population. The countries of the sub-Saharan region 

are organised into the Economic Communities of West Africa 

(ECOWAS), East Africa (EAC), Central Africa (ECCAS), and Southern 

Africa (SADC). Madagascar was omitted from this study due to the 
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lack of complete data for the region. In Africa, clusters of large towns 

and cities are concentrated in regions of economic importance, 

particularly the Nile Delta, the Maghreb, southern Nigeria and the 

economic heartland of South Africa, which together contain roughly 

half of Africa’s population on about 2 per cent of its land area (Braune 

and Adams, 2013). According to these authors, the rural population is 

densely populated over relatively small areas of the continent with 

wide areas still sparsely populated, with fewer than 4 persons per km². 

Rural settlements in many small villages characterized by an 

agricultural economy thus still dominate Tropical Africa. The map in 

Figure 3-1 illustrates the settlement pattern in Africa.  

 

 

Figure 3-1: Human geographic conditions in Africa (Braune and Adams, 2013) 
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3.2 Climate and rainfall in Africa 

Africa is one of the region’s most vulnerable to climatic changes. It is 

the world’s second driest continent after Australia (UNEP, 2010). 

Approximately 66 per cent of Africa is classified as arid or semi-arid 

(see Figure 3-2), with extreme variability in rainfall (UNEP, 2002). The 

distribution of rainfall varies in space and time, with a consequent 

overall unreliability of water supplies. For example, the humid region 

of Central Africa, which comprises 20 per cent of the continent’s land 

area, receives 37 per cent of its total rainfall. In contrast, the arid region 

of North Africa, occupying a similar area, receives less than 3 per cent 

(Goulden et al., 2009). In some places temporal variations are as high 

as 40 per cent around the mean (UNECA et al., 2000). Rainfall 

variability in Africa can result in extreme events such as flooding or 

severe droughts over years or decades. According to Church (2011), 

the Sahel, the semi-arid belt that lies across Africa south of the Sahara 

and north of the tropical regions, has experienced the greatest change 

in rainfall patterns anywhere in the world since measurements began. 

Africa’s rainfall and climate variability have had serious impacts on 

social and economic development. Africa is highly dependent on rain-

fed agriculture and fluctuations in rainfall can have significant impacts 

on food production and security (Church, 2011). There are three main 

deserts, the Sahara in the north and the Kalahari and Namib deserts in 

Southern Africa. More than 40 per cent of Africa’s population lives in 

arid, semi-arid and dry sub-humid areas, where demand for water and 

other ecosystem services is on the rise (Ingram et al., 2002; De Rouw, 

2004; Sultan et al., 2005). As a result of high temperatures everywhere 

in Africa, except at high altitudes and during winter in the extreme 

north and south, rates of evaporation from the soil and water surfaces 

are high, varying from about 750 mm in the more humid and cooler 

regions to more than 2,000 mm. This has a major impact on the 

hydrological cycle in terms of infiltration, groundwater recharge and 
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runoff production, as well as on most human uses of water, 

particularly irrigation (Grove, 1996, cited in Xu and Braune, 2010). 

 

Figure 3-2: Aridity zones of climate classes for the African continent (Church, 2011) 

 

3.3 Surface water 

Africa’s surface water resources comprise a total of 63 international 

rivers basins, covering 64 per cent of its land area and containing 93 

per cent of total surface water resources (UNEP, 2010). These river 

basins are also home to some 77 per cent of the population according 

to UNEP (2010). Surface water resources in Africa are predominantly 

transboundary, with most situated in the central and southeastern 

regions of the continent, reflecting the spatial pattern of rainfall. 

According to the Royal Society of Chemistry (2010), around 50 per cent 

of Africa’s total surface water resources are generated in the Congo 
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basin alone. The most important river is the Nile, which drains north-

east and empties into the Mediterranean Sea. The Congo drains much 

of Central Africa and empties into the Atlantic Ocean. The Niger is the 

principal river of Western Africa and the continent’s third-longest 

river after the Nile and the Congo, and empties into the Atlantic Ocean. 

Southern Africa is drained by the Zambezi River. Africa’s largest lakes 

are Lake Victoria, the world’s second-largest freshwater lake, and Lake 

Tanganyika, the second-deepest lake in the world. Some of the world’s 

largest dams are found in Africa, such as the Volta, Kariba and Cahora 

Bassa. According to Church (2011), surface water resources provide 

benefits ranging from hydropower generation, irrigation, inland 

fisheries, tourism, and recreation, to water supply for domestic, 

industrial, and mining operations. A new map (Figure 3-3) showing 

major surface water features (rivers and lakes) in Africa was developed 

by the British Geological Survey (BGS) by combining three separate 

open source datasets, the Africa Groundwater Atlas, the World 

Wildlife Fund’s Digital Chart of the World, and the FAO (Food and 

Agriculture Organization of the United Nations).  

 

While the availability of rainwater and freshwater from rivers and 

lakes will likely become more erratic and thus less reliable as a result 

of climate change, groundwater is likely to be less affected than surface 

resources by climate variability, higher temperatures, and evaporation 

(from ClimDev-Africa, Policy Brief 5, n.d.).  
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Figure 3-3: Rivers and major surface water bodies in Africa (BGS, 2015) 

3.4 Geological and hydrogeological context 

The African continent encompasses various climatic regions and a 

large geological diversity. Geology has a profound influence on 

groundwater conditions. The geology of the African continent contains 

14 lithological classes with varying coverage: unconsolidated 

sediments (35.1 per cent), metamorphic rocks (27.6 per cent), 

siliciclastic sedimentary rocks (16.4 per cent), carbonates sedimentary 

rocks (9.4 per cent), mixed sedimentary rocks (6.4 per cent), basic 

volcanic rocks (3.3 per cent), acid plutonic rocks (1.1 per cent), water 

bodies (0.9 per cent), evaporites (0.6 per cent), intermediate volcanic 

rocks (0.6 per cent), basic plutonic rocks (0.2 per cent), intermediate 

plutonic rocks (0.1 per cent), and acid volcanic rocks (0.1 per cent), 

(Hartmann and Moosdorf, 2012). Lithology describes the geochemical, 

mineralogical and physical properties of rocks (see Figure 3-4).  
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Groundwater occurrence depends primarily on geology, 

geomorphology, and rainfall (both current and historic). The interplay 

of these three factors gives rise to complex hydrogeological 

environments with substantial variations in the quantity, quality, ease 

of access, and renewability of groundwater resources. It is widely 

accepted that hydrogeological conditions are the major determinant of 

groundwater availability. Across Africa, MacDonald et al. (2012) 

distinguish five important hydrogeological environments:  

 Precambrian crystalline basement rocks, which occupy 34 per 

cent of African land area and comprise crystalline rocks with 

very little primary permeability or porosity. 

 Consolidated sedimentary rocks, which occupy 37 per cent of 

land area, mainly across uninhabited areas. Sandstone basins 

can store considerable volumes of groundwater and support 

high yielding boreholes of 10-50 litres per second. 

 Volcanic rocks, which occupy only 4 per cent of land area and 

are found in East and Southern Africa, where they underlie 

some of the poorest and most drought-stricken areas of Africa. 

 Unconsolidated sediments from some of the most productive 

aquifers in Africa, which cover approximately 25 per cent of 

land area. They have high porosity and can store large volumes 

of groundwater. 

 Unconsolidated sediments in river valleys, which are highly 

significant aquifers in Africa. They probably cover less than 1 

per cent of land area, but are present in most river valleys. 
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Figure 3-4: The lithological context of the African continent (from Hartmann and 

Moosdorf, 2012) 

Groundwater and aquifers are highly important in Africa, especially 

for dry countries in the northern and southern sub-regions. 

Groundwater plays an important role in providing water for people 

and animals in rural areas of Africa, and is perhaps the only practical 

means of meeting the needs of rural communities in arid and semi-arid 

regions (Robins et al. 2006). Widespread but limited groundwater 

represents only 15 per cent of the continent’s renewable water 

resources, but it is the source of drinking water for three-quarters of 

the continent’s population (UNECA et al., 2000). The largest 

groundwater reserves in Africa are found in large sedimentary aquifer 

systems in Libya, Algeria, Sudan, Egypt and Chad (MacDonald et al., 

2013). Groundwater development has tended to flourish most in the 

drier western, eastern and south-eastern parts of Africa, where annual 

precipitation is less than 1,000 mm per year (Foster et al., 2006). Most 

countries in the desert areas of Africa, such as Libya, Egypt, Algeria, 

Tunisia, Morocco, Namibia, and Botswana, receive very little 

precipitation and therefore rely heavily on groundwater resources. 
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The cities of Lusaka, Windhoek, Kampala, Addis Ababa and Cairo are 

highly dependent on groundwater for municipal water, and 

groundwater also contributes to the supply of other cities such as 

Lagos, Abidjan, Cape Town and Pretoria (Robins et al., 2006). 

According to Braune and Xu (2010), in general, groundwater 

represents the only source of water in North Africa. In other examples, 

groundwater provides for 80 per cent of domestic and livestock 

demand in Botswana (SADC et al., 2008) and meets 80 per cent of the 

needs of Namibia’s rural population (Ndengu, 2002). These examples 

show that groundwater is generally cheaper to develop compared to 

alternatives. While aquifers are usually protected from contamination, 

pollution from human activities on the surface is of growing concern. 

In addition, naturally occurring fluoride (F) and arsenic (As) can cause 

significant problems. Groundwater is less prone to evaporation than 

are surface water bodies, so it is a more reliable water source, especially 

during droughts (cited in UNEP, 2010). Finally, groundwater is a 

source of seepage into water bodies such as rivers and lakes, and this 

interaction in the water cycle is important for maintaining the integrity 

of ecosystems. However, some of Africa’s important aquifers are 

losing water faster than the rate of recharge, for example those found 

in large sedimentary basins, such as Lake Chad, and under the Sahara 

Desert (Stock, 2004).  Pavelic et al. (2012), affirms that past and present 

climatic conditions, particularly rainfall patterns, dictate rates of 

recharge and hence long-term replenishment and aquifer 

sustainability. 

3.5 Transboundary aquifer distribution and current 

knowledge 

Africa is heavily reliant on groundwater resources, with an estimated 

75 per cent of the population dependent on this resource for basic 

water supplies (Altchenko and Villholth, 2013). However, with 

population growth, climate change and the need to combat growing 

food insecurity, demand for groundwater is set to increase in the 
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future. The focus on transboundary aquifers (TBAs) comes from the 

recognition of the increasing stress on available water resources. TBAs 

are major groundwater systems that span more than one country. The 

definition of a TBA is given by Stephan (2009) as ‘an aquifer or aquifer 

system, parts of which are situated in different states’ (see Figure 3-5). 

According to UNECA et al. (2011), an international transboundary 

aquifer can be defined as ‘an aquifer system with physical boundaries 

that extend over one or more administrative arrangements’.  

Africa is known for its large proportion of water systems that are 

shared between nations. Most of the major aquifers systems in Africa 

are shared by two or more countries, and therefore TBAs represent 

highly important groundwater resources in Africa. Altogether, at least 

eighty of the important aquifers that are known in Africa are TBAs 

(Altchenko et al., 2013). According to AGW-Net (2014), the 80 

identified TBAs together represent approximately 42 per cent of the 

continental land area and 30 per cent of the population. The most 

significant of these are found in arid and semi-arid regions, but the 

total number (including non-shared aquifers) is not known. 

Cooperation among countries to develop TBAs will be needed if such 

resources are to be developed effectively. To this regard, on 16 

December 2013, the UN General Assembly adopted an international 

resolution on the “Law of Transboundary Aquifers” referred to as  

“A/RES/68/118”. The resolution noted the major importance of the 

subject of the law of transboundary aquifers in the relations of States 

and the need for reasonable and proper management of transboundary 

aquifers, a vitally important natural resource, through international 

cooperation for present and future generations. The resolution of the 

General Assembly includes nineteen (19) law or articles on 

transboundary aquifers. A few examples of these laws are: (Article 10) 

Protection and preservation of ecosystems; (Article 12) Prevention, 

reduction and control of pollution; (Article 13) Monitoring; (Article 14) 

Management. 
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TBAs encompass a wide variety of characteristics, in size as well as 

geological setting, recharge rate, and population density. Table 3-1 

shows the evolution in the number of TBAs inventoried over the last 

decade by ISARM (Internationally Shared Aquifer Resources 

Management), WHYMAP (World-wide Hydrogeological Mapping 

and Assessment Programme) and the International Groundwater 

Resources Assessment Centre (IGRAC). A significant increase in 

number is noticeable in Southern Africa and Western/Central Africa, 

primarily due to the activities of ISARM in both areas. As a United 

Nations Centre, IGRAC is taking a global lead in assessing and 

providing information on transboundary aquifers. There are many 

initiatives looking at various aspects of transboundary groundwater, 

including global baseline assessments and more detailed regional or 

aquifer assessments. Ashton and Turton, (2009), affirms that there are 

also a number of transboundary aquifers which require strategic 

management in terms of groundwater resources and water quality. 

 

 

Figure 3-5: Transboundary groundwater (cited in AGW-Net, 2014) 
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 Table 3-1: Evolution of the number of TBAs in Africa inventoried and mapped by 

various     efforts and subdivided into regions (Altchenko and Villholth, 2013) 

African 

regiona 

UNESCO, 

2004 

WHYMAP, 

2006 

IGRAC, 

2009 

IGRAC, 

2012a 

Altchenko and 

Villholth, 2013 

North Africa 6 6 7 9 15 

Western and 

Central Africa 

(excluding 

SADCb 

countries) 

9 9 9 22 22 

Eastern Africa 

(excluding 

SADC 

countries) 

5 5 5 6 8 

Southern 

Africa (SADC 

countries) 

18 20 20 34 35 

Total 38 40 41 71 80 
                                aUnited Nations sub-region definition (UN data, 2013). 
                                 bSouthern African Development Community. 

 

3.6 Resource availability 

3.6.1 Groundwater storage 

Understanding and characterising Africa’s groundwater pollution and 

groundwater-to-nitrate contamination requires an understanding of 

the spatial distribution of groundwater storage, aquifer permeability 

and annual rate of recharge. Groundwater is Africa’s most precious 

natural resource, providing reliable water supplies to at least a third of 

the continent’s population (MacDonald, 2010). However, the African 

continent is not blessed by a large quantity of groundwater resources; 

it is the world's second-driest continent after Australia and water 

resources are limited. Total groundwater storage in Africa is estimated 

at 0.66 million km3 with a range in uncertainty of between 0.36 and 1.75 

million km3 (MacDonald et al., 2012). According to these authors, not 

all of this groundwater storage is available for abstraction, but the 

estimated volume is more than 100 times estimates of annual 
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renewable freshwater resources on Africa. Figure 3-6 shows 

groundwater storage across Africa, which has been estimated by 

MacDonald et al. (2012) by combining the saturated thickness and 

effective porosity of aquifers. We observe that large sedimentary 

aquifers in North Africa contain a considerable proportion of Africa’s 

groundwater. Many of the large, North African aquifers are not 

actively recharged, but were recharged more than 5000 years ago when 

the climate of the area was wetter (Scanlon et al., 2007). Abstraction 

from these aquifers is considered to be mining fossil groundwater. 

According to MacDonald et al.(2013), away from the arid areas of 

Africa, groundwater recharge generally occurs on at least decadal 

timescales (Taylor et al., 2012), and ongoing monitoring can assist in 

identifying whether abstraction for irrigation is in excess of long term 

recharge and would deplete groundwater storage (MacDonald et 

al.,2013). For example, countries such as– Libya, Algeria, Sudan, Egypt 

and Chad – in this region have the largest groundwater reserves and 

fossil groundwater. 

 

Figure 3-6: Groundwater storage map for Africa, expressed as water depth in 

millimetres, with modern annual recharge for comparison (MacDonald et al., 2012) 

 



70 

Despite the importance volume of groundwater estimated by 

MacDonoald et al. (2012) for Africa and mentioned above, the water 

resources are influenced by the evaporation/evapotranspiration. To 

this regard, by modeling global-scale groundwater recharge, Döll and 

Fiedler (2008) affirms that total internally renewable water resources 

of a country are equal to the sum of net cell runoff of all cells within 

the country. They can be smaller than the groundwater resources, or 

even negative. The latter is the case in Botswana, Egypt and Malawi, 

where more water evapotranspirates from land, wetlands and lakes 

than falls as precipitation inside the country. Döll and Fiedler (2008) 

added the groundwater resources of Chad, Mali, Senegal, Sudan, The 

Gambia, Uganda and Zambia are larger than the total internally 

renewable water resources due to evaporation of external water from 

open water surfaces.  According to them, other semi-arid countries that 

are strongly affected by evaporation from surface waters (e.g., Burkina 

Faso and Central African Republic), groundwater use may have the 

potential to decrease evaporation from surface waters and thus to 

increase total water resources. 

3.6.2 Aquifer productivity 

The accessibility of groundwater resources is as important as overall 

storage in determining how far groundwater can support nations and 

communities in adapting to climate change and population growth 

(Calow et al., 2010). Generally, groundwater is accessed and abstracted 

by drilling boreholes, and the yield of the borehole limits the rate at 

which groundwater can be abstracted. Figure 3-7 is a groundwater 

productivity map and indicates what boreholes yields can reasonably 

be expected in different hydrogeological areas. The ranges indicate the 

approximate interquartile yield range of boreholes that have been sited 

and drilled using appropriate techniques, rather than those drilled at 

random. The most productive and high-storage aquifers that have 

been mapped in Africa are the large sedimentary basins in North 

Africa.  
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Figure 3-7: Groundwater productivity map (MacDonald et al. 2011) 

3.7 Pressures on water quality in Africa 

Groundwater is considered the major source of water supply and 

provides water for domestic use, agriculture and industry in Africa. It 

represents approximately 75 per cent of Africa’s total drinking water 

and is an integral component of the water cycle. In many countries in 

SSA, groundwater plays an important role in providing domestic 

supplies to the rural population. For example, according to SADC 

statistics, groundwater is the primary drinking water source for both 

humans and livestock in the driest areas of the SADC, and it is 

estimated that about 60 per cent of the population depends on 

groundwater resources for domestic water. In addition to small-scale 

groundwater use in rural areas, there is pronounced use in many urban 

centres. The large cities in SSA that are groundwater-dependent are 

shown in Figure 3-8. Even in cases where groundwater is a small 

fraction of total water use, it represents a stable source of water 

(particularly in dry years) and this is one of its important 

characteristics. In addition to the large cities shown Figure 3-8, several 

urban centres not included in this map also depend on groundwater 
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and many small towns are dependent on groundwater for their water 

supply. However, in many areas in recent years, extracting 

groundwater has become more difficult because of over-exploitation. 

Growing populations and rising economies have resulted in increasing 

consumption of water and discharge of wastewater, which causes 

heavy pollution (Omosa et al., 2012). For example, groundwater that is 

subject to unplanned and excessive abstraction in coastal cities is 

inducing saltwater intrusion, resulting in permanent damage to coastal 

aquifers. According to Steyl and Dennis (2010), it is also clear that the 

majority of urban centres are located in coastal regions, and as such 

may be impacted by saline intrusion. Comte et al., (2016) affirms that 

the management of coastal groundwater poses further challenges due 

to its vulnerability to seawater contamination, and because of the 

specific physical and socio-economic characteristics of the coastal zone. 

In terms of quality, Africa has an adequate groundwater reservoir for 

future generations. However, agriculture can severely degrade 

groundwater resources. The water quality of groundwater is becoming 

a major concern (UNEP, 2011; Takem et al., 2010) and continuous 

abstraction together with anthropogenic activities represent the main 

sources of groundwater pollution in Africa. For example, in Sub-

Sharan of Africa the issue of the vulnerability of critical urban 

groundwater sources to anthropogenic contamination has to date 

received little attention compared to other regions globally Lapworth 

et al. (2017). To illustrate the problem of nitrate pollution in urban 

centres in SSA, Lapworth et al. (2017) represented on the Figure 3-9 the 

mean nitrate recorded per urban groundwater study, compared with 

the DRASTIC risk aquifer vulnerability (from Ouedraogo et al. 2016) 

and maximum population density in the settlement studied. Figure 3-

10 shows a growing low-income urban population in Africa. 

According to Pravettoni (2011), the slum areas tend to lack 

infrastructure such as pipe-borne water and sewerage, and services 

such as garbage collection and waste management are often non-

existent.  In the context of rural in Africa, MacDonald and Calow (2009) 
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argue that increasing use and construction of household latrines pose 

a considerable threat to groundwater supplies. At the multi-country 

level, the map of Figure 3-11 shows the eleven countries studies on the 

project, “Assessment of the Pollution Status and Vulnerability of Water 

Supply Aquifers of African Cities” realised by UNEP (from M’mayi, 

2014). Indeed, contaminants can migrate vertically to the aquifer and 

then to the borehole or, more dangerously, horizontally through 

permeable soils to poorly constructed supplies, particularly in African 

informal settlements ( See Figure 3-12, Figure 3-13, and Figure 3-14). 

Also, current intensive agriculture practices lead to excess nitrate in 

soil and groundwater. Fertiliser use and irrigation returns can degrade 

water quality by increasing nitrate concentrations and salinity 

(Scanlon et al., 2007; Ó Dochartaigh et al., 2010). Furthermore, the 

production process that modern mining entails has the potential to 

affect the environment in several ways, e.g. through acid rock 

drainage, contamination of ground and surface water, and emission of 

air pollutants according to U.S. Environmental Protection Agency 

(2000), Environment Canada (2009) and Natural Resources Canada 

(2010) cited in Aragon and Rud (2012). Furthermore, Aragon and Rud 

(2012) affirms that mining operations can also affect water quality 

when waters (natural or wastewater) infiltrate through surface 

materials into the groundwater and pollutes it with contaminants such 

as metals, sulphates and nitrates. A few examples in relation with 

mining activities and nitrate pollution were found in Africa. By 

studying nitrate pollution from open-pit mines in the Limpopo 

province of South Africa, Bosman (2009) found a serious nitrification 

(57 mg/l) of a community drinking water supply near an open-pit 

mine, which was identified as the cause of the contamination, after 

other potential sources. ActionAid (2008) analysed water samples 

taken at three sites in Ga-Molekane village (Limpopo province in 

South Africa), near community for drinking water next to the river. 

They found that water was unfit for human consumption, containing 

high concentrations of total dissolved salts, sulphate and nitrate. 
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Although the possible cause could be raw sewage seeping into the 

groundwater recharge zone, the report noted that the most probable 

cause was mining activities. In addition, a second water sample was 

taken at Ga-Pila village in the same province, in a seep made by the 

community for their drinking water next to the river. This sample 

showed the water to be unfit for human consumption, because it 

contains high concentrations of total dissolved salts, sulphate and 

nitrate. The report found that it could be safely deduced that the cause 

of contamination was mining activities. According to MacDonald et al. 

(2013), elevated nitrate concentrations in the water environment can 

have a major impact on ecosystems and detrimental health effects for 

humans. Nitrate is the most important pollutant in Africa (Xu and 

Usher, 2006) and concentrations in groundwater have dramatically 

increased in the last decade. The allowable upper limit for nitrate in 

drinking water (50 mg/L as NO3-, according to WHO value) has already 

been exceeded in many parts of Africa.  

 

Despite all the pressures on groundwater bodies, stemming from 

different sources (including urbanisation, landfills, wastewater and 

solid wastes, and nonpoint agricultural agrochemicals), the use of 

fertilisers (organic and inorganic) to ensure high crop production is 

continuously increasing in Africa. This has led MacDonald et al. (2013) 

to declare that almost all groundwater abstraction and land use 

activities will have some impact on groundwater. Therefore, 

management strategies generally focus on minimising impacts, 

particularly for third parties, rather than eradicating them altogether, 

because water pollution not only reduces available freshwater but also 

affects human and ecosystem health (Armstrong, 2009; Pickering and 

Davis, 2012; Montgomery and Elimelech, 2007). 
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Figure 3-8: Groundwater dependent cities in Africa (Morris et al., 2003) 
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Figure 3-9: Relationship between mean nitrate levels, population density, and 

DRASTIC aquifer vulnerability risk score among 31 studies that a predominantly 

sampled boreholes  and b predominantly sampled wells and springs (Lapworth et al. 

2017). 
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Figure 3-10: Slum population in urban Africa ( from Pravettoni, 2011) 

 

 

 

 

 

 

 

 

 

 

Figure 3-11: Eleven countries in the project (M’mayi/ UNEP/DEWA, 2014) 
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Figure 3-12: The source/pathway/receptor concept for groundwater pollution 

(MacDonald, n.d) 
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Figure 3-13: South African informal settlements (UNEP/DEWA, 2014) 

 

 

Figure 3-14: Relating groundwater source vulnerability to land use: (A) a vulnerable, 

unlined, shallow well adjacent to the road in a lower cost housing area; (B) a shallow 

well and a borehole with protective headworks, located in gated properties within 

higher cost areas; (C) a fully-sealed public water supply borehole within a secure 

compound in the peri-urban Mukobeko wellfield in Zambia (Sorensen et al., 2015a). 
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As an example, Figure 3-15 shows the temporal evolution of nitrate 

concentrations in the groundwater system for the city of Abidjan, Ivory 

Coast. Observations of evolving average annual levels of drilling water 

nitrate in Abidjan over 11 years, from 1992 to 2002, show a steady 

increase. The author (Ahoussi et al., 2013), concludes that the temporal 

distribution of water nitrate levels in groundwater demonstrates that 

nitrate levels have risen for decades. This increase in nitrate levels is 

related to population growth and increased urbanisation, highlighting 

the significant pressure exerted by human activities on the city’s 

groundwater, which contribute to the degradation of its quality. 

Another example, Figure 3-16 shows the spatial distribution of nitrate 

concentrations in country scale of Burkina Faso. We observe that 

higher levels of nitrate concentration is found in everywhere on the 

map and boreholes/wells have a nitrate concentration above the WHO 

standard. Table 3-2 presents an overview of typical problems caused 

by groundwater pollution in Africa, as proposed by Wang et al. (2014). 

 

Figure 3-15: Evolution in average levels of drilling water nitrate in Abidjan city 

(Ahoussi et al. 2013) 
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Figure 3-16: Groundwater nitrate distribution in Burkina Faso (Pavelic et al. 2012) 
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Table 3-2: Typical problems of groundwater pollution (Wang et al. 2014) 

City/country Problems of groundwater pollution 

Port-Harcourt, Nigeria 

Over 80 per cent of drinking water is reliant on groundwater, but the shallow water table makes it 

prone to pollution, for example by untreated wastewater. This increases the risks of water-borne 

diseases (UNEP, 2010). 

Nairobi, Kenya 

1. Nairobi’s upper aquifer is particularly vulnerable to pollution from human activities such as 

landfills and dumpsites, leakage from underground storage of petroleum and chemicals, and 

infiltration from polluted streams (Li et al., 2011). 

2. Industrial wastewater and pesticides lead to groundwater pollution. 

Kisumu, Kenya 
Although groundwater is easily available (groundwater levels are 2–5m from the soil surface), the 

water supply in this area is still dependent on surface water because groundwater is susceptible to 

contamination due to inadequate drainage and overflowing pit latrines (Parkman et al., 2008). 

Thiaroye, Dakar, Senegal 
Concentrations of NO3- in groundwater can be over 50 mg/L, which is due to the overuse of 

agricultural fertilisers (UNEP, 2011). 

Ghana 
Chemicals in borehole water from 38 per cent of samples exceed the WHO guidelines. Typical 

contaminants are nitrate (NO3-), manganese (Mn) and fluoride (F-) (Rossiter et al., 2010). 

Bolama Island, Guinea-Bissau  Around 79 per cent of wells show moderate to heavy faecal contamination (Bordalo et al., 2007). 

Addis Ababa, Ethiopia Toxicant leachate from dumped solid waste is a major factor in groundwater contamination. 

Northern Mali and Zambia 
Arsenic pollution, both geogenic or anthropogenic, is a common contaminant in groundwater. This 

is also a global challenge. 

Kampala, Uganda 
1. Pit-latrines deteriorate groundwater quality (UNEP, 2011). 

2. Dilapidated pipelines result in the contamination of groundwater (ibid). 

Sirte, Libya 
Groundwater is becoming salted because of water intrusion from the Mediterranean Sea. The salt 

water results in higher costs of desalination (Gossel et al., 2010). 
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Chapter 4 Mapping the groundwater 

vulnerability for pollution at the pan 

African scale1

                                                      
1 Based on: 

Ouedraogo, I., Defourny, P., Vanclooster, M. (2016). Mapping the groundwater 

Vulnerability for pollution at the pan-African scale. Science of the Total Environment, 

Vol. 544, p. 939-953.DOI: 10.1016/j.scitotenv.2015.11.135 

Ouedraogo, I., and Vanclooster, M. (2016). Shallow groundwater poses pollution 

problem for Africa. In: SciDev.Net. 4 pp, http://hdl.handle.net/2078.1/169630 
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4.1 Abstract 

We estimated vulnerability and pollution risk of groundwater at the 

pan-African scale. We therefore compiled the most recent continental 

scale information on soil, land use, geology, hydrogeology and climate 

in a Geographical Information System (GIS) at a resolution of 15 km x 

15 km and at the scale of 1:60,000,000. The groundwater vulnerability 

map was constructed by means of the DRASTIC method. The map 

reveals that groundwater is highly vulnerable in Central and West 

Africa, where the water table is very low. In addition, very low 

vulnerability is found in the large sedimentary basins of the African 

deserts where groundwater is situated in very deep aquifers. The 

groundwater pollution risk map is obtained by overlaying the 

DRASTIC vulnerability map with land use. The northern, central and 

western part of the African continent is dominated by high pollution 

risk classes and this is very strongly related to shallow groundwater 

systems and the development of agricultural activities. Subsequently, 

we performed a sensitivity analysis to evaluate the relative importance 

of each variable on groundwater vulnerability and pollution risk. The 

sensitivity analysis indicated that the removal of the impact of the 

vadose zone, the depth of the groundwater, the hydraulic conductivity 

and the net recharge causes a large variation in the mapped 

vulnerability and pollution risk. The mapping model was validated 

using nitrate concentration data of groundwater as a proxy for 

pollution risk. Pan-African concentration data were inferred from a 

meta-analysis of literature data. Results show a good match between 

nitrate concentration and the groundwater pollution risk classes. The 

pan African assessment of groundwater vulnerability and pollution 

risk is expected to be of particular value for water policy and for 

designing groundwater resources management programmes. We 

expect, however, that this assessment can be strongly improved when 

better pan African monitoring data related to groundwater pollution 

will be integrated into the assessment methodology. 
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4.2 Introduction 

Groundwater is an important water resource for meeting the various 

water demands in Africa. It is vital for supporting the socio-economic 

development of the continent, as well as for maintaining a wide 

diversity of ecosystem functions and services. However, the booming 

population in Africa, together with climate change, increase the 

pressure on the African groundwater resources considerably, both in 

quantity as in quality. For defining sustainable water resources 

management plans at the continental scale, assessments of 

groundwater resources and associated pressures are strongly needed 

(Hasiniaina et al., 2010).  

 

Several studies have already been undertaken to improve the 

knowledge of African groundwater systems. At the local scale, Xu and 

Usher (2006) recently compiled information from the UNEP/UNESCO 

project “Assessment of pollution Status and Vulnerability of Water 

Supply Aquifers of African Cities”. They confirm that groundwater in 

African cities is subjected to different pollution pressure exerted by 

several sources such as leaking sewage systems, solid waste 

dumpsites, household waste pits, surface water infiltration spots, peri-

urban agriculture sites, petrol service stations (underground storage 

tanks) and wellfields. At the continent scale and sub-regional scale, 

studies include the development of the African groundwater map  

(WHYMAP, 2008; Seguin. 2008), the assessment of groundwater 

potential (Wright, 1992; Chilton and Foster, 1995), the assessment of 

basin yield, storage capacity, flow types and saturated thickness (BGS, 

2011), the drought vulnerability in the SADC region (Villholth et al., 

2013), the groundwater availability (UNEP, 2010; Palevlic et al., 2012) 

and the irrigation potential from renewable groundwater (Alchentko 

et al., 2014). In another continental scale, to support policy, some 

studies addressed the need for mapping groundwater vulnerability to 

pesticide leaching EU-wide (Tiktak et al.2004; Tiktak et al. 2006). 
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Furthermore, Abbaspour et al. (2015) developed also a continental-

scale hydrology and water quality model for Europe by using a high-

resolution large-scale SWAT model. Schriever and Liess (2007) 

introduced a screening model of generic indicator termed runoff 

potential (RP) to characterise the ecological risk of pesticide runoff at 

the EU-scale. At the global scale, more recently, studies were also 

undertaken. DeGraaf et al. (2014), for instance, presented the first high-

resolution global scale groundwater model. Notwithstanding this 

recent progress, no study has been made for assessing the pan African 

scale groundwater vulnerability for pollution. Assessing groundwater 

quality at the large scale is particularly important for monitoring 

progress in sustainable development, such as the implementation of 

the UN SDG for water.   

 

In this context, assessing the groundwater vulnerability to pollution is 

important for designing efficient regional scale groundwater 

management and protection strategies. When discussing groundwater 

vulnerability, a difference can be made between specific vulnerability 

and intrinsic vulnerability (NRC, 1993). Vulnerability is an intrinsic 

property of a groundwater system that depends on the sensitivity of 

that system to human and/or natural impacts (Vrba and Zaporozec, 

1994). Specific vulnerability is used to define the vulnerability of 

groundwater to a particular contaminant or a group of contaminants. 

For specific vulnerability, specific physico-chemical properties from 

contaminants are considered (Gogu and Dassargues, 2000). 

Groundwater pollution risk can be defined as the process of estimating 

the possibility that a particular event may occur under a given set of 

circumstances (Voudouris, 2009) and the assessment is achieved by 

overlaying hazard and vulnerability (Gogu and Dassargues, 2000; 

Uricchio et al,2004). Several approaches exist for assessing 

groundwater vulnerability. They can be grouped into methods based 

on the use of (1) process-based simulation models, (2) statistical models 

and (3) Multicriteria decision-making (MCDM) models. Dixon et al. 

(2015) argue that MCDM models are often used to characterize 
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intrinsic aquifer vulnerability (Al-Hanbali and Kondoh, 2008; Gogu 

and Dassargues, 2000; Farjad et al., 2012; Mimi et al., 2011). 

Alternatively, they can be classified according to the degree of 

integration of monitoring data in the vulnerability assessment 

(Vanclooster et al., 2014). Hence, a distinction can be made between 

vulnerability assessment methods based on generic data, based on 

groundwater monitoring data, or hybrid methods based both on 

monitoring and generic data.   

Regional-scale groundwater vulnerability assessment models based 

on MCDM approach have been widely used to define intrinsic aquifer 

vulnerability (Honnungar, 2009). Within the Multicriteria decision-

making (MCDM) models, the DRASTIC model (Aller et al. 1987) put 

forth by US Environmental Protection Agency (USEPA) is a prime 

example of using MCDM for aquifer vulnerability characterization. It 

is the most used method worldwide, and belong also to the overlay 

and index methods family. The method has been widely used for 

regional vulnerability assessments in many countries such as the USA 

(Fritch et al., 2000; Shuka et al., 2000; Kumarasamy, 2007), China (Yuan 

et al., 2006), Canada (Liggett et al., 2010), India (Senthilhumar et al., 

2014), Turkey (Ersoy et al., 2013),Tunisia (Saida et al., 2010; 2011), 

South Africa (Musekiwa and Majola, 2013) and Ivory Coast (Jourda et 

al.,2007), among many others. 

MCDM approaches similar to DRASTIC have been used elsewhere as 

well, and include the SINTACS method (Civita, 1990), the EPIK 

method (Doerfliger et al.1999), the GOD method (Foster, 1987), the 

SEEPAGE method (Moore and John, 1990). At large scale, two 

examples illustrating the use of index overlay methods in their study 

are:  (1) Zhou et al. (2015) evaluated the vulnerability of global 

groundwater systems to nitrate contamination with GOD method; (2) 

Jaroslav (UNESCO-IHP) and Richts (BGR) (2015) used DRASTIC 

method to map the global groundwater vulnerability to floods and 

droughts at the scale of 1: 25 000 000. The DRASTIC method, as like 

similar index models, has many advantages: (1) the method has a low 

cost of application and can be applied at the regional scale, because it 
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is based on often easily available generic data (Aller et al., 1987); and 

(2) the use of a high number of input data layers is believed to limit the 

support of errors or uncertainties of the individual data layer in the 

final output (Evans and Myers, 1990, Rosen, 1994). Despite its 

popularity, the DRASTIC method has some disadvantages (Neshat et 

al., 2013). First, many variables are factored into the final number 

(vulnerability index) that critical parameters in the groundwater 

vulnerability may be subdued by other parameters that have no 

bearing on vulnerability for a particular setting (Vrba and Zaporozec, 

1994). Hence, in many cases, vulnerability can be explained with a 

subset of DRASTIC factors. Second, studies based on the DRASTIC 

method tend to overestimate the vulnerability of porous media 

aquifers compared to aquifers of fractured media (Rosen, 1994). Third, 

only few studies have been performed to validate the DRASTIC 

vulnerability method at the regional scale. Despite these 

disadvantages, the DRASTIC method can easily be deployed to make 

continental scale assessment of groundwater vulnerability. To this 

regard, Honnungar (2009) affirms that regional-scale delineation of 

aquifer vulnerability represents the first-step of any integrated land-

water management paradigm. 

The major objective of this study is to assess the groundwater 

vulnerability and pollution risk at the pan African scale, using the 

DRASTIC indicator methodology. A specific objective is to identify the 

quality and sensitivity of the different data layers in the regional scale 

vulnerability assessment and to assess the validity of the vulnerability 

assessment using nitrate contamination as a proxy of the vulnerability. 

To implement the DRASTIC indicator methodology at the pan African 

scale, a best available database of environmental for the continent was 

established.  
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4.3 Materials and methods 

4.3.1 The DRASTIC model 

In the present study, the DRASTIC method is used for evaluating 

groundwater vulnerability for pollution. The acronym DRASTIC 

corresponds to the initials of the seven variables that drives 

vulnerability as defined according to Aller et al. (1987) and shown in 

Table 4-1.  

 

The DRASTIC vulnerability index was calculated by the addition of 

the different products (rating×weight of the corresponding variable), 

using the following the equation: 

 

Di =DwDr,i + RwRr,i+ AwAr,i+ SwSr,i+ TwTr,i +IwIr,i + CwCr,I                 (1) 

where Di, is the DRASTIC index; D, R, A, S, T, I, and C are the seven 

variables, as defined in Table 4-1; and the subscripts r,i and w are the 

corresponding rating for grid cell i and weights. 

Table 4-1: Weight settings for DRASTIC variables (Aller et al., 1987) 

Symbol Variable Weight 

Dw Depth to Water     5 

Rw Net Recharge     4 

Aw Aquifer media     3 

Sw Soil type     2 

Tw Topography     1 

Iw Impact of vadose zone     5 

Cw Hydraulic Conductivity     3 
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The weights indicate the relative importance of each DRASTIC 

variable with respect to the other variables. These weights are constant 

(Ehteshami et al., 1991). Also, for each DRASTIC variable the 

designated rating varies from 1 to 10. The rating ranges were 

determined depending on the properties at the pan-African scale. A 

good knowledge of geology and hydrogeology of the research area is 

a prerequisite to determine the rating ranges of the parameters (Sener 

et al., 2009). In general, the ratings assigned in this study were similar 

to the typical ratings suggested in the original DRASTIC study (Aller 

et al., 1987). However, they have been adjusted to consider the full 

variability of DRASTIC variables as retrieved in the present study 

(Table 4-4 and Table 4-5 ), similarly as in the example presented by 

Sener et al. (2009). 

Finally, for purposes of interpretation, we subdivided the possible 

values of the DRASTIC index calculated into five classes of 

vulnerability, according to the range of indices defined by Jourda et al. 

(2007): 

 Di > 176 is considered to have a  very high vulnerability;  

 146 <Di < 175 is considered to have a high vulnerability; 

 115 <Di < 145 is considered to have a moderate vulnerability; 

 84 < Di <114 is considered to have a low vulnerability; and 

 Di <84 isconsidered to have a very low vulnerability. 

 

4.3.2 Data acquisition and data base compilation 

We constructed a GIS data base for the hydrogeology, the geology, the 

soil, the groundwater recharge and topography of Africa. Table 4-2 

shows the metadata of the constructed GIS data base. We processed all 

data with ArcGIS 10.2TM, QGISTM 2.2 and MatlabTM. 

Data came in various spatial resolutions. Before processing the data, it 

is important to keep in mind data processing errors identified by 

Murat et al.(2004): the errors refer to data handling and integration 
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such as format conversion, structure of data storage (raster/vector), 

geometric and positioning system transformation, spatial analysis 

(buffering, overlaying), querying, updating, etc. Notwithstanding 

uncertainty associated with spatial data processing, all our GIS data 

were converted to raster form by projecting the data into a world 

sinusoidal projection appropriate for the continental scale of Africa. 

This type of projection represents areas accurately. We resampled GIS 

datasets to determine the adequate spatial resolution. For example, in 

the case of land cover/land use and soil, the resampling was performed 

with the nearest neighbor method consistent with categorical scaling 

of the data. While, for continuous data such as topography (slope), or 

recharge, we resampled using the bilinear interpolation algorithm 

until we achieved our choice of resolution. We proposed a 15 km x 15 

km resolution for this study. We consider that this resolution is a 

reasonable compromise between different resolutions of the different 

datasets, computing constraints and regional extent. We obtained the 

vulnerability and risk maps, after classifying and assigning relative 

ratings and weights, then overlaying the individual maps in a GIS. We 

consider that this resolution is a reasonable compromise between 

different resolutions of the different datasets, computing constraints 

and regional extent. We obtained the vulnerability and risk maps, after 

classifying and assigning relative ratings and weights, then overlaying 

the individual maps in a GIS. 

 

4.3.3 Development of the DRASTIC variables  

Figure 4-1 gives an overview of the methodology used to develop the 

intrinsic groundwater vulnerability map. Each variable processed in 

the GIS is described below.  
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4.3.3.1 Depth of groundwater (D) 

The ‘Depth to water table’ (D), is the vertical distance from the land 

surface to the top of the saturated zone in the aquifer. It represents the 

distance that a potential contaminant must travel before reaching the 

aquifer. Consequently, the D will have an impact on the degree of 

interaction between the percolating contaminant and the sub-surface 

materials (air, minerals, water) and, therefore, on the degree and extent 

of the physical and chemical attenuation and the degradation process 

(Rahman, 2008). In general, the vulnerability for pollution decreases 

with D. The D was calculated from the data as presented by Bonsor et 

al. (2011). The original value of this variable was not continuous and 

was obtained in a categorical data format. 

4.3.3.2 Net Recharge(R) 

The ‘Net Recharge’, R, represents the amount of water per unit area of 

land penetrating the ground surface and reaching the water table. It is 

thus influenced by the amount of surface cover, the slope of the land 

surface, the permeability of the soil and the amount of water that 

recharge the aquifer. The dispersion and dilution of contaminants 

depend greatly on the volume of water available in the vadose zone as 

well as in the saturated zone and thus on the net recharge. High 

recharge areas are more vulnerable than low recharge areas. Net 

recharge was derived from the global-scale modeling of groundwater 

recharge as presented by Döll and Fiedler (2008).
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Table 4-2: Data used for the creation of the seven variable data layers of the pan African DRASTIC model 

 Raw data Sources Format Resolution/Scale Date Output layer 

Depth to 

groundwater map 

British Geological 

Survey 

(http://www.bgs.ac.uk/) xyzASCII file  5km 2012 

Depth of water 

(D) 

Recharge data 
P.Döll and F. Portman 

(University of 

Frankfurt)  Shapefile  0.5°x0.5° 2008 Recharge (R) 

The new global 

lithological map 

database (GLiM) 

Nils Moosdorf 

(HamburgUniversity) 

File 

Geodatabasefeature 1:3750 000 2012 

Aquifer media 

(A) 

 

Soil data 

ISRIC, World Soil 

Information   Raster   1km×1km 2014 Soil type(S) 

SRTM90 

UCL/ELIe-Geomatics 

(Belgium) and 

CGIAR/CSI Raster      90mx90m 2000 

Topography (T) 

or slope (%) 

The new global 

lithological 

map(GLiM) 

Nils Moosdorf 

(HamburgUniversity) 

File 

Geodatabasefeature 1:3750 000 2012 

Impact of 

Vadose zone(I) 

 

Global 

HYdrogeologyMaPS 

(GLYMPS)  

of permeability and 

porosity 

T;P;Gleeson (McGill 

University) 

File 

Geodatabasefeature 

Average size of 

polygon 

~100km2 2014 

Hydraulic 

Conductivity(C) 

 

Land cover/land use 

map        

 

UCL/ELIe-Geomatics 

(Belgium) 

Raster geotiff 300mx300m 2014 Land Use(LU) 
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4.3.3.3 Aquifer media (A) 

The ‘Aquifer media’, A, refers to type of consolidated or 

unconsolidated material which hosts the aquifer (Esroyet al., 2013). A 

was inferred from three main data sources: (1) the high resolution 

global lithological database (GliM) of Hartmann and Moosdorf (2012); 

(2) the global permeability estimates of Gleeson et al.(2011); and (3) the 

African hydrogeology and rural water supply map of MacDonald et 

al. (2008). The analysis of the global permeability has permitted to 

identify parent material for each hydrolithologic unit. The GLiM data 

bases encompass 16 lithological classes, is similar to the number of 

classes as used in the study of Dürr et al. (2005). In this work, we 

assumed that the lithological map represents the geology. Aquifer 

media were determined of each of the five hydrolitholigies, defined as 

broad lithologic categories with similar hydrogeological characteristics 

(Gleeson et al., 2011). These categories are unconsolidated sediments, 

siliciclastic sediments, carbonate rocks, crystalline rocks and volcanic 

rocks (Gleeson et al., 2014). Aquifer media and Impact of vadose zone 

were inferred from GLiM and global permeability data. The 

vulnerability of the aquifer will increase if the grain size and the 

fractures or openings within the aquifer will increase (Alwathafet al., 

2011). 

4.3.3.4 Impact of the vadose zone (I) 

The role of the unsatured zone above the water table is integrated in 

the I variable. It is an important variable in the estimation of 

vulnerability, because it influences the residence time of pollutants in 

the unsaturated zone, and hence the attenuation probability. Similar to 

the A variable, the method used to identify the vadose zone material 

depend on GLiM data and the African hydrogeological map, based on 

each parent material type that is the same as for aquifer media. The 

weights and ratings for I are shown in Table 4-5 and Figure 4-9, and 

correspond to the map layer created for the vadose zone.  
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4.3.3.5 Topography (T) 

The‘Topography’, T, determines the runoff and infiltration capacity of 

the surface water into the soil, and hence the capacity to introduce 

pollutants into the soil. If the slope is important, more runoff will be 

generated and hence groundwater contamination risk will be low. 

However, flat areas tend to retain water for a long time, therefore 

increasing the potential for migration of contaminants. The T was 

inferred from the 90 meter Shuttle Radar Topography Mission 

(SRTM90) database. The slope values were generated with the SRTM 

90 by using the Spatial Analyst software of ArcGIS10.2TM. The slope 

layers were resampled and reclassified with the ratings into six classes. 

4.3.3.6 Soil media (S) 

Soil is the first media the contaminant passes through when it 

percolates into the ground. According to Lee, (2003), soil has a 

significant impact on the amount of recharge that can infiltrate into the 

ground, and hence on the ability of a contaminant to move vertically 

into the vadose zone.  For this study, the soil map of Africa was 

inferred from the data processed by Hengl et al. (2014). 

4.3.3.7 Hydraulic conductivity (C) 

The ‘Hydraulic conductivity’, C, is a measure of the ability of the 

aquifer to transmit water when submitted to a hydraulic gradient. It 

determines the migration velocity of pollutants, and hence the 

residence time and attenuation potential. High conductivity values 

will be associated to high contamination risks (Rahman A., 2008). We 

inferred the hydraulic conductivity map from the global 

hydrogeological map of permeability and porosity, as produced by 

Gleeson et al. (2014). This global permeability map is given in log 

permeability (log (k)). From our case, the hydraulic conductivity is 
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more useful. We converted k permeability into K hydraulic 

conductivity as follows: 

K=  k*rho*g/mu                                                               (2)                                                                                                                                                                                                                                 

where K (m/s) is hydraulic conductivity which depends on fluid 

viscosity and density, rho (kg/m3) is the density of the fluid, normally 

water=999.97 kg/m3, g (m/s2) is the acceleration due to gravity=9.8 m/s2; 

and mu (kg/m.s or Pa.s) is the viscosity of the fluid. Hence, following 

Gleeson et al., (2014), we use the following conversion: 

K=k*1e+7                                                                                                                                       (3)                                                                                                                                                                                                                  

 

 

Figure 4-1: Flow chart of the methodology used to develop the groundwater 

vulnerability map using the DRASTIC model in GIS 
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4.3.4 Sensitivity analysis 

One of the major advantages of the DRASTIC model is the fact that a 

high number of input data layers is used (Evan & Myers, 1990). Indeed, 

increasing the number of data layers limits the impact of errors or 

uncertainties of the individual parameters on the final output (Rosen, 

1994). Some scientists agreed that groundwater vulnerability 

assessment can be studied without considering all the factors of the 

DRASTIC model (Merchant, 1994); yet this opinion is not shared by 

others (e.g. Napolitano and Fabbri 1996). We, therefore, performed a 

sensitivity analysis that provides information on the influence of rating 

and weights assigned to each of the factors considered in the model 

(Gogu and Dassargues 2000). Two sensitivity analyses tests were 

performed: the map removal sensitivity analysis introduced by 

Lodwick et al. (1990), and the single parameter sensitivity analysis 

introduced by Napolitano and Fabbri (1996). 

 

The map removal sensitivity identifies the sensitivity of the 

vulnerability map towards removing one or more maps from the 

analysis and is computed by the following equation:  

 

𝑆𝑖 = (|𝐷𝑖 𝑁 − 𝐷′𝑖 𝑛⁄⁄ |/𝐷𝑖) × 100,                                (4) 

                                   

where Si is the sensitivity index, Di is the unperturbated vulnerability 

index, D’i is the perturbated vulnerability index, i is the grid cell index, 

and N and n are the number of data layers used to calculate Di and Di’. 

We considered the vulnerability index obtained using all the seven 

parameters as an unperturbated vulnerability index and the 

vulnerability computed using fewer parameters layers as the 

perturbated vulnerability. 

 

The single-parameter sensitivity measure was developed to evaluate 

the impact of each of the DRASTIC parameters on the vulnerability 
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index. It allows comparing the “effective” weight with their “theorical” 

weight (Babiker et al., 2005). The “effective” weight of each parameter 

in each subarea is computed using the following equation: 

 

Wi= (Pr, i×Pw/Di) ×100                                        (5) 

                                      

where Wi refers to the “effective” weight of each parameter, Pr,i and Pw 

are the rating value and the weight of each parameter respectively, and 

Di is the overall vulnerability index. 

4.3.5 Development of groundwater risk map  

The groundwater pollution risk corresponds to the potential of a 

groundwater body for undergoing groundwater contamination 

(Farjad et al., 2012). The risk of pollution is determined both by the 

intrinsic vulnerability of the aquifer, which is relatively static, and the 

existence of potentially polluting activities at the soil surface. These 

latter activities are time dynamic and can be controlled (Saidi et al, 

2010). Land use information is often used as a proxy for pollution 

pressure at the soil surface. In this study, the high resolution land 

cover/land use map was obtained from the GlobCoverdataset (Mayaux 

et al., 2013). We used the land use categories as defined by Mayaux et 

al. (2013). Land use is thus grouped into five classes namely (1) forests, 

(2) woodlands, shrub lands and grasslands, (3) agriculture, (4) bare soil 

and (5) other land-cover classes (water bodies and cities). We 

generated the groundwater pollution risk map by combining the 

intrinsic groundwater vulnerability map with the land use map, using 

the additive model of Secunda et al. (1998). 

 

Hence, the land use (L) is incorporated here into the risk model as an 

eighth parameter. Using the following DRASTIC equation, modified 

from Secunda et al. (1998):  
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MDi = Di + Lr, i×Lw                                                                                                    (6)                                                                                                                                                               

                                                                                                                                               

where MDi is the modified DRASTIC index for risk assessment, Di is 

the DRASTIC index and Lr,ixLw is the multiplication of rating for grid 

cell i and weight for land use. 

In order to evaluate the groundwater pollution risk map at the pan 

African scale, the land use/land cover map was combined with the 

DRASTIC vulnerability map. The weight (Lw =5) used for the land use 

layer is the value defined by Secunda et al. (1998). The land cover/land 

use map (Figure 4-2) was geo-referenced and also converted to a raster 

grid format. The twenty two classes of land cover/land use were 

reclassified into six major classes: forest/tree, croplands, 

grassland/shrubland, bare areas, and urban area and water bodies 

(Figure 4-3). Subsequently, land cover/land use was rated according to 

the values in Table 4-3.  
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Figure 4-2: Land cover/ land use map for Africa (modified from Defourny et al. 2010) 
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Figure 4-3: Reclassify categories of land cover/land use map (modified from Defourny et al. 2010) 
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Table 4-3: Rating of Land use in this study: 
aafter: Bataineh et al; bafter: Dickerson, (2007), cafter:Secunda    et al., 

(1998),dafter: from Shrirazi et al., (2012). 

 

4.3.6 Validation using observed nitrate concentration data 

The above mentioned modified DRASTIC model is an indirect method 

for evaluating vulnerability and pollution potential of groundwater 

systems on a regional scale. This method heavily relies on accessible 

generic data and should therefore be validated. Indeed, the use of 

methods that are not validated can result in erroneous conclusions and 

subjective vulnerability assessment (Leal and Castillo, 2003). However, 

since intrinsic and specific vulnerabilities only measure the likelihood 

that groundwater systems may be degraded, or become degraded in 

the future, it cannot be measured directly in-situ. This challenges the 

empirical validation of vulnerability mapping (Andrea et al. 2005). In 

this study we implement the approach as presented by Sulmon et al. 

(2006), and compare the vulnerability patterns with proxies of 

vulnerability that can be measured in-situ. In this paper, we use the 

degradation of groundwater systems by nitrates as a proxy for 

vulnerability. We select nitrate in groundwater as a proxy since 

anthropogenic activities like agriculture or urban development are the 

principle causes of groundwater pollution by nitrates. Also, many 

groundwater monitoring programs include nitrate as a monitoring 

parameter, and therefore nitrate contamination data are widely 

available at the regional scale. The spatial patterns of nitrate 

contamination are therefore closely related to the spatial patterns of 

Land Cover/Land use Rating 
aUrban 8 
bCroplands 10 
bGrassland/Shruland 4 
cTree/Forest 1 
aWater bodies 3 
dBare areas 1 
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anthropogenic activities and are therefore good proxies for the spatial 

patterns of overall vulnerability. In our study, we compared 

groundwater nitrate concentration inferred from a meta-analysis with 

the aforementioned modified DRASTIC vulnerability risk map. 

Existing groundwater nitrate contamination data were collected from 

250 studies. This allowed identifying the minimum (185 cases), 

maximum (206 cases) and mean (92 cases) of nitrate concentration of 

groundwater systems in Africa. Most studies are situated in the 

agricultural belt surrounding the African mega-cities where 

population density is high, or close to the coastal zones. 

 

The validation of the groundwater vulnerability map was made 

through the nitrate distribution analysis and the vulnerability classes. 

ArcGIS10.2 was used to distribute spatially the minimum, mean and 

maximum nitrate concentrations in Africa and were compared with 

the various degrees of vulnerability maps. 

4.4 Results and discussion 

4.4.1 Ratings of DRASTIC parameters and aquifer 

vulnerability 

Ratings and weights of each parameter of DRASTIC are illustrated in 

Table 4-4 and  Table 4-5, which vary from 1 to 10, with higher values 

describing greater pollution.  

 

The D map is represented in Figure 4-4. The rate varies from 0 to 

more than 250 m bgl across the African continent. The heights are 

shallow mostly in Central Africa, West Africa, Southern Africa and 

some areas of North Africa. These areas are more susceptible to 

contamination according the DRASTIC assumptions. The high values 

of D are located in large sedimentary aquifers in North Africa (Libya, 

Algeria, Egypt and Soudan). These aquifers contain a considerable 

proportion of Africa's groundwater. The assigned D ratings vary 
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between 1 to 10, according the classification of Aller et al. (1987). The 

highest scores of 9 and 10 are assigned where the depths are in the class 

0-7 m and 7-25 m, respectively. The lowest depths are assigned a rating 

of 1. 

 

The R map is shown in Figure 4-5. Africa has areas with low net 

recharge rate (<50 mm/year) for which a rating of 1 is assigned, and 

areas with high recharge ranges (>225 mm/year), particularly in 

Central Africa and a portion of western Africa for which a rating of 9 

is assigned. 

 

The A map is shown in Figure 4-6. The ratings in Table 4-5 are 

assigned as commonly found in previous studies. A rating of 10 is 

assigned to carbonate rocks because their permeability value is most 

likely influenced by the presence of karst phenomena (Gleeson et al., 

2011; Graaf et al., 2014). According Gleeson et al. (2011), volcanic rocks 

correspond to permeable basalt. A rating of 9 is assigned to these 

aquifer types. The major aquifer media in unconsolidated sediments 

are clay, sand and gravel. A rating of 8 is assigned to these media, 

considering that sand and gravel layers are dominant over clay layers, 

following the study of MacDonald et al. (2008). A low rating of 3 is 

assigned to crystalline rocks, because they are identified as fracture 

igneous/metamorphic rocks. Following Hartmann and Moosdorf 

(2012), we considered water bodies as an “other rock type”, and we 

have assigned a rating of 8 for water bodies. 

 

The texture based S map is represented in Figure 4-7. Soils are 

mapped in seven different classes. The dominant textures at the 

continental scale are sandy clay, loam and clay loam. The silty clay and 

sandy soil types appear in a lower proportion. The highest rating, 9, is 

assigned to the sandy soil and the lowest rating, 1, to the clayey soil. 

There is no information available on soils for the Sahara region; thus 

this part was rated equal to 0. 
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The T map representing the surface slope is shown in Figure 4-8. 

A gentle slope (0-4 %) is dominating the largest part of Africa. A rating 

score of 9 and 10 is assigned to this class, indicating that there is a large 

probability of pollution infiltration. The highest slopes are located in 

East Africa and areas associated with the high mountain range. A rate 

of 1 is assigned to areas where slopes are larger than 18 %, indicating 

their minimal potential effect on the groundwater vulnerability. 

 

The I map is shown in Figure 4-9. The data used to define this 

parameter is the same as that used for the A map. Although the same 

hydrolithology is used for both A and I parameters, the maps are 

different because the crystalline rocks (igneous/metamorphic rocks) of 

the vadose zone are assigned a rating of 4 for I (Aller al., 1987). The 

weights and ratings for I are shown in Table 4-4.  

 

The C map is shown in Figure 4-10. The hydraulic conductivity 

calculated is inferred from the global permeability database and has 

been classified in six classes (Figure 4-10). In general, the variability of 

the C parameter is not high. Low hydraulic conductivity values, 

inferior to 0.01 m/day are dominating in Southern Africa. We assigned 

a rating of 1 to this class. The continent is dominated by the hydraulic 

conductivities values varying between 0.04-0.13 m/day and 0.13-0.34 

m/day, so we assigned respectively the ratings of 4 and 6. The horn of 

Africa and North Africa shows high conductivity values ranging 

between 0.57–2.82 m/day. The maximum rating score of 10 is assigned 

to these areas. 

 

The resultant DRASTIC map is shown in Figure 4-11. DRASTIC 

classes have been grouped together into very low, low, moderate, high 

and very high vulnerability intervals. 
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Table 4-4: Rate and weight of the seven DRASTIC parameters (Aller et al., 1987) 

Depth of  

Groundwater (m) 

Net  

Recharge (mm) 
Topography (%) 

Hydraulic  

Conductivity (m/day) 
Soil media 

Interval ratings Interval ratings Interval Ratings Interval ratings Soil classes Ratings 

0-7 10 0-45 1 0-2 10 <=0.010426 1 Clay 1 

7-25 8 45-123 3  2-4 9 0.010426-0.038255 2 Clay loam 3 

25-50 5 123-224 6 4-8 8 0.038255-0.12701 4 Loam 5 

50-100 3 224-355 8 8-12 5 0.12701-0.34525 6 Loamy sand 7 

100-250 2 >355 9 12-18 3 0.34525-0.569221 8 Sandy clay 2 

>250 1 

  

 >18 1 0.569221-2.819372 10 Sandy clay loam 4 

        

Sandy loam 6 

        

Silty clay loam 3 

        

Sand 9 

Weight:5   Weight: 4   Weight: 1   Weight: 3   Weight: 2   

a based on literature 
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Table 4-5: Rate and weights (A=3 and I=5) of aquifer media and impact of the vadose zone (Aller et al., 1987) 

Lithology classesa Hydrolithology classesb Bedrock material A and I ratings 

Unconsolidated sediments Unconsolidated 

 

         A(8) and I(7) 

 

c.g.unconsolidated Alluvial deposits, dune sands 

 

 f.g.unconsolidated Loess (Aeolian sediment), organic sediment  
Siliciclastic sediments Siliciclastic sedimentary Limestone, sandstone,            6 

 

c.g. siliciclastic sedimentary Dolomite, siltone, salt 

 

 f.g.sedimentary Conglomerate, shale  
Mixed sedimentary rocks Carbonate Karst limestone            10 

Carbonate sedimentary rocks 

   
Evaporites    
Acid volcanic rocks Volcanic Permeable basalt             9 

Intermediate volcanic rocks 

   
Basic volcanic rocks    
Acid plutonic rocks Crystalline Igneous/ metamorphic rocks       A(3) and I(4) 

Intermediate plutonic rock 

   
Basic plutonic rocks 

   
Metamorphic rocks    

Water bodies « Others rock »                        -                  8 
aHartmann and Moosdorf(2012);  bBased on Gleeson et al.(2011) 
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Figure 4-4: DRASTIC rating for the depth to groundwater (D).
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Figure 4-5: DRASTIC ratings for the net recharge (R) for Africa 
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Figure 4-6: DRASTIC rating for the Aquifer type (A) for Africa. 
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Figure 4-7: DRASTIC rating for Soil media (S) for Africa 
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Figure 4-8: DRASTIC rating for the Topography (T) for Africa. 
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Figure 4-9: DRASTIC rating for the Impact of vadose zone (I) for Africa 
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Figure 4-10: DRASTIC rating for the hydraulic conductivity (C) for Africa 

4.4.2 Sensitivity of the DRASTIC model 

4.4.2.1 Summary of the DRASTIC parameters  

The Table 4-6 shows a statistical summary of the seven rated 

parameters of the DRASTIC model. On average, the T parameter 

(mean =9.12) has the highest rate values. The I (mean = 7.68), A 

(mean=6.36), D (mean=5.34) and C (mean=5.16) parameter have a 

moderate rate value. The S (mean =2.85) and R (mean =2.73) parameter 

imply a low rate value. The coefficients of variation (CV) indicate that 

a high contribution to the variation of vulnerability is expected by the 

variability in R (92.30%), S (76.49%) and D (65.16%). A moderate 

contribution is expected due to variability of C (42.67%) and A 

(39.62%), while the impact of the variability of I (20.05%) and T 
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(18.53%) is expected to be the lowest.  In this research, vadose zone and 

aquifer media are composed of the same material. This could 

explained why A and I have the same maximum values (Max=13).  

 

Table 4-6: Statistical summary of the DRASTIC parameters map 

  D R A S T I C 

Minimum 1 1 3 0 1 4 1 

Maximum 10 9 13 9 10 13 10 

Mean 5.34 2.73 6.36 2.85 9.12 7.68 5.16 

SD 3.48 2.52 2.52 2.18 1.69 1.54 2.20 

CV(%) 65.16 92.30 39.62 76.49 18.53 20.05 42.67 

SD: refers to the standard deviation and CV: coefficient of variation. 

4.4.2.2 Map removal sensitivity analysis 

The results of the map removal sensitivity analysis computed by 

removing one or more data layers at a time are presented in Table 4-7 

and Table 4-8.  Table 4-7 reveals that the I map is the layer that affects 

strongly the final vulnerability index. This is mainly due to the high 

theoretical weight assigned to this parameter (weight =5). In contrast, 

Table 4-7 reveals that the T map, A map and C map affects the least the 

variation index (mean variation = 0.63%, 0.63% and 0.40%, 

respectively). This is due to the low weight (weight=1) associated to T 

and C. The variation in vulnerability observed after the removal of the 

D, and R map is moderate (mean = 1.28 %, and 1.21 % respectively).  

 

Table 4-8 illustrates the variation of the vulnerability index due to the 

removal of one or more data layers at a time from the DRASTIC model 

computation. The layer which causes less variation in the final 

vulnerability index is removed first. It appears from the Table 4-7 that 

after removing the hydraulic conductivity layer, T, the variation index 

has the least average value (mean=0.63%), while the highest variation 

is associated with the removal of the D and I parameters (mean=11.31% 
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and mean=17.21% respectively). This average variation index changes 

as more data layers are removed from the computation. The removal 

of some layers (D, and I) affects the vulnerability assessment and this 

is demonstrated by all sensitivity tests.  
 

       Table 4-7: Statistics of map removal analysis 

Parameters removed 
Variation index (%) 

Minimum Maximum Mean SD 

D 0 5 1.28 1.57 

R 0 12 1.21 1.23 

A 0 4 0.63 0.63 

S 0 3 1.15 0.78 

T 0 3 0.63 0.53 

I 0 8 2.32 1.25 

C 0 3 0.40 0.55 

         One parameter is removed at a time. SD refers to the standard deviation 

     Table 4-8: Statistics of map removal sensitivity 

Parameters used 
Variation index (%) 

    

Mean Minimum Maximum SD 

D, R, A, S, T, I 0.63 0 3 0.53 

D, R, A, S, I  1.14 0 4 1.11 

D, R, S, I  3.2 0 8 1.98 

D, R, I 6.84 0 30 3.13 

D, I 11.31 0 46 5.34 

I 17.21 0 47 7.50 

          One or more parameters are removed at a time. SD refers to the standard deviation 
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4.4.2.3 Single-parameter sensitivity analysis 

While the map removal sensitivity analysis presented in previous 

section has confirmed the significance of the seven parameters in the 

assessment of the DRASTIC vulnerability index at the pan Africa scale, 

the single parameter sensitivity analysis allows the comparison 

between the effective and theoretical weights. The effective weight of 

the DRASTIC parameter is a function of the theoretical weight and the 

interaction with the other six parameters of the DRASTIC model 

(Babiker et al., 2005). The comparison is given in Table 4-9. The 

effective weight of the DRASTIC parameters obtained in this study 

exhibited some deviation from the theoretical weights. The I parameter 

tends to be the most effective parameter in the vulnerability 

assessment. His mean effective value of 31.12 % is higher than the 

theoretical weight of 21.7 %. This result is in agreement with the map 

removal sensitivity analysis for this parameter. The effective weight of 

the D parameter (19.71 %) is less than to its theoretical weight 21.7 %. 

The effective weights for A and T (15.76 %, 7.19 %) are higher then their 

theoretical weight (13.0 %, 4.3 %). The significance of the vadose zone, 

aquifer media and topography layers highlights the importance of 

obtaining accurate, detailed and representative information about 

these factors. The other DRASTIC parameters reveal lower effective 

weights compared to their theoretical weights. Parameters A, I and C 

are based effectively on the same datasets, which explains their 

contribution to adding up more 50% of the effective weight of the 

intrinsic vulnerability. 
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   Table 4-9: Statistics of single parameter sensitivity analysis 

Parameters Theoretical weight Theoretical weight (%) 

Effective weight (%) 

Mean Min Max SD 

D 5 21.7 19.71 2 70 11.52 

R 4 17.4 7.25 2 32 5.94 

A 3 13.0 15.76 4 39 7.43 

S 2 8.7 3.92 0 17 3.32 

T 1 4.3 7.19 0 13 2.31 

I 5 21.7 31.12 11 60 7.49 

C 3 13.0 12.07 1 33 5.44 

   SD refers to the standard deviation 

4.4.3 Mapping of groundwater pollution risk 

The result of groundwater pollution risk map is shown in Figure 4-12. 

We classified Africa into five zones corresponding to a very low, low, 

moderate, high and very high groundwater pollution risk. We observe 

a very low and low risk for the Sahara desert where large sedimentary 

basins are found. Indeed, the absence of important anthropogenic 

activities in combination with very low and low vulnerability zones 

result in very low and low contamination risks. We calculate high to 

very high vulnerability zones for regions in North Africa and a few 

zones of Eastern Africa and Southern Africa. A large part of Southern 

Africa shows a low risk for pollution. In general, high risk areas for 

pollution in Africa are lowlands where agricultural development is 

important. A region with a low pollution risk does not mean that it is 

free from groundwater contamination, but that it is relatively less 

susceptible to contamination compared to other regions. 
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Figure 4-11: Groundwater intrinsic vulnerability map of Africa.    Figure 4-12: Risk map of groundwater pollution for Africa 
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The intrinsic vulnerability map indicated that Central Africa and a 

portion of West Africa are dominated by very high and high intrinsic 

vulnerabilities. The low depth of groundwater in these regions and the 

high recharge explains this high intrinsic vulnerability. The large 

sedimentary basins in North Africa are characterized by a low intrinsic 

vulnerability. The large depths of water and very low recharge rates 

explain these low intrinsic vulnerabilities. It also appears that in some 

regions like Southern Africa and Eastern Africa, a very high and high 

vulnerability of groundwater are also due to the shallow depths of 

groundwater systems. The topography parameter had the highest 

mean rating value for assessing the intrinsic vulnerability of Africa 

groundwater. The impact of vadose zone, the aquifer media and depth 

to groundwater had a moderate mean rating value while the soil 

media, the net recharge and the hydraulic conductivity had a low 

mean rating value respectively on vulnerability. The map removal 

sensitivity analysis test indicated that the vulnerability index is highly 

sensitive to the removal of the impact of vadose zone, the depth to 

groundwater and recharge layers. The index is less sensitive to the 

removal of hydraulic conductivity parameter. The single-parameter 

sensitivity analysis showed that the impact of vadose zone, the aquifer 

media and topography are the most significant environmental 

parameters which dictate the intrinsic vulnerability of African 

aquifers. Consequently, this highlights the importance of obtaining 

accurate, detailed, and representative information  for the different 

parameters explaining intrinsic vulnerability of groundwater systems  

(Bouchaou et al., 2009). 

 

We also created the first pan African groundwater pollution risk map. 

Areas under very high and high pollution risk are mainly 

characterized by shallow groundwater systems. At the opposite, low 

contamination risks are observed for the large sedimentary basins in 

North Africa, a little portion of Eastern and Southern Africa. Indeed, 

these groundwater systems situates at larger depths. The risk map of 



122 

groundwater pollution in Africa shows that water resources are 

mainly under pressure in large agricultural basins. 

 

 

Figure 4-13: Risk map overlaying Transboundary aquifers (TBAs) defined by 

Altchenko and Villhoth (2013) 

 

The eight model parameters of the groundwater pollution risk model 

were constructed, classified and encoded employing various maps 

from several sources and at different mapping scales. Figure 4-12 has 

the merit to produce a very valuable map for managing and protecting 

groundwater at the regional scale. So, water directors can use the 

vulnerability map to support the design of groundwater development 

or protection programs.  Figure 4-13 for example give the utility of this 

risk map for transboundary aquifers management (International 

Network of Basin Organizations (INBO), Global Water Partneship 

(GWP)). 
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4.4.4 Validation of the groundwater vulnerability map 

4.4.4.1 Spatial concentrations of nitrate  

The spatial distribution of the nitrate mean groundwater concentration 

inferred from the meta-analysis is illustrated in Figure 4-14. In the 

meta-analysis database, 206 studies related to the maximum 

concentration of nitrate, 185 studies to the minimum concentration of 

nitrate, and 92 studies to the mean concentration of nitrate have been 

analysed. This meta-analysis reveals that nitrate concentration varies 

between zero and 4625 mg/L. We selected the mean nitrate 

concentration as proxy for risk and superimposed on the previously 

developed risk map.  

 

 

 

Figure 4-14: Spatial distribution of mean nitrate concentration in groundwater 
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4.4.4.2 Regression of aggregated nitrate concentration data with 

estimated groundwater risk  

We also aggregated the observed maximum nitrate concentration for 

each vulnerability class and compared it with vulnerability and risk. 

In this approach, the DRASTIC index has been used as surrogate of the 

vulnerability map and regressed against the extracted nitrate 

concentration. Figure 4-15 and Figure 4-16 illustrate that the 

aggregated maximum nitrate concentration data are positively related 

to the intrinsic vulnerability (R2= 0.89) and the risk for pollution (R2= 

0.65) respectively. This suggests that the generic model for mapping 

vulnerability and groundwater pollution risk is consistent with 

observed nitrate inferred from the literature.  We chose the maximum 

concentration values of nitrate as aggregate values to show the trend 

of our groundwater vulnerability model, because the sample size is 

larger for the maximum concentration. Also, sample data of maximum 

concentration cover the complete study area. However, the 

aforementioned results shows that further validation using more 

measurement data is recommended.  

Furthermore, by analysing the Figure 4-15, we can conclude that the 

intrinsic vulnerability at the pan-African scale divided into 5 classes, 

could be grouped into three categories with very low and low classes 

as 1st category, moderate and high classes the 2nd category and 3rd 

category corresponding to the very high class of vulnerability index. 

While, the risk pollution map represented by Figure 4-16 could be 

regrouped into two categories at the continental scale, with 1st category 

including very low and low class of risk degree and 2nd category 

representing the moderate, high and very high classes. 
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    Figure 4-15: Relation between nitrate maximum and DRASTIC with R2=0.89 

 Figure 4-16: Relation between nitrate maximum and risk degree with R2=0.65 
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4.4.5 Limitations of vulnerability assessment 

Although the method DRASTIC is good and used worldwide (most 

popular approach to groundwater vulnerability assessments, because 

it is relatively inexpensive, straightforward, and uses data are 

commonly available or estimated, and produces an end product that 

can easily be interpreted and incorporated into the decision-making 

process); it also has disadvantages. To be effective, DRASTIC requires 

calibration against real groundwater observation (Worrall and Besien, 

2005). The DRASTIC index provides only a relative evaluation tool and 

is not designed to provide absolute answers (Gogu and Dassargues, 

2000). Furthermore, as pointed out by Foster (1998) cited in Abdullahi 

(2009), the method has some general shortcomings such as that it 

underestimates the vulnerability of fractured aquifers, and that the 

weighting system is not scientifically based. In spite of the limitations 

in fractured aquifers observed by Foster (1998), Murat et al. (2003) used 

2 methods (DRASTIC and GOD) to study aquifer vulnerability in two 

hydrogeological settings in Canada. In their study at local and regional 

scale, they concluded that: “it is clear through this comparative study 

that vulnerability maps vary significantly with the selected 

vulnerability evaluation method and the type of investigated 

hydrogeological setting. DRASTIC appears to be the method that 

provides the best results in both the superficial granular and 

confined/semi- confined fractured rock contexts studied. Also, by 

applicability of regional-scale MCDM (Multi-criteria decision-making) 

based on intrinsic aquifer and vulnerability assessment, Honnungar 

(2009) addressed the limitations that arise due to spatial and temporal 

variability of input (data and resolution), data processing methods 

(sampling and interpolation methods), subjectivity in assigning 

weights and ratings by decision makers, non-integration of intrinsic 

and specific vulnerability, and non-linear relationships between the 

hydrogeological parameters. Thus, through the research of 

Honnungar (2009), we acknowledge that our continental-scale 
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groundwater vulnerability assessment presents also some limits. 

Other limitations of DRASTIC were outlined in Cotonou/Benin where 

seawater intrusion is as great a risk as surface contamination (Xu and 

Usher, 2006). 

In addition to these limitations, groundwater vulnerability 

assessments have also some uncertainties. To this regard, NRC (1993) 

affirms that uncertainty is inherent to all vulnerability assessments. 

Loague et al. (1999) adds that, in general assessments of groundwater 

vulnerability at the regional scale rest upon soil, climate, and chemical 

data that are extremely sparse and contain considerable uncertainty. In 

a study on a propose to monitor uncertainty associated with spatial 

data processing for aquifer vulnerability mapping and GIS, Murat et 

al.(2004) affirm uncertainty monitoring may be complex and subjective 

and in fact it is rarely done on a regular basis mainly because it requires 

much more efforts compared to simply running the model. 

4.5 Conclusion 

We assessed the intrinsic vulnerability and risk for groundwater 

pollution at the pan African scale. We deployed the empirical index 

model DRASTIC into a GIS. The GIS provides an effective analysis 

environment and a strong capacity for handling large amounts of 

spatial data. We identified the seven environmental DRASTIC 

parameters (Depth to water (D), net Recharge (R), Aquifer media (A), 

Soil media (S), Topography (T), Impact of vadose zone (I), and 

hydraulic Conductivity (C)) from available generic data, and compiled 

them into a 15 km resolution geo-database for the African continent. 

We classified and coded these parameters to create an intrinsic 

groundwater vulnerability map. Subsequently, we combined the 

intrinsic vulnerability map with a high resolution land use/land cover 

map to assess the groundwater pollution risk. We show that the 

DRASTIC index varies between 66 to 213. We classified this index into 

5 classes, ranging from very low to very high.  
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Despite the lack or limit of groundwater pollution data at the 

continental scale, the intrinsic vulnerability and risk map was tested 

and validated using nitrate concentration data as proxies for 

vulnerability and risk. Nitrate concentration data were inferred from a 

literature meta-analysis. High nitrate concentrations detected in 

literature coincide with high intrinsic vulnerability and high pollution 

risks. This illustrates the consistency between the calculated 

vulnerability and groundwater pollution risk using generic data on the 

one hand, and the observed contamination on the other hand. 

However, the explained variability in the boxplots and scatter plots is 

still rather low, showing that quite some scope exist to calibrate and to 

improve the proposed vulnerability and groundwater risk mapping 

procedure. This should be based on a better understanding of the 

factors explaining the contamination at the pan African scale. When 

the availability of lack monitoring data will become operational, she 

allowing to consolidate the calibration and validation of the presented 

mapping methodologies.  

Vulnerability assessments are a general planning and decision-making 

tool. They should not be mistaken for a scientifically precise prediction 

for future contamination. Rather, they are a general assessment of the 

risk that contamination may occur in groundwater. As with any risk 

analysis, there is no guarantee that contamination does or doesn’t 

occur.  

 

The maps that were designed in this study can increase awareness of 

citizens and regulators in areas where groundwater pollution is likely 

to be significant. In addition, they could prompt national or 

international authorities to foster targeted local investigations.  In fact, 

environmental management needs to be operatively performed at 

regional, country and local scales, but investment policies can be 

addressed at continental or even global scales by international agencies 

and authorities (e.g., AMCOW, African Development Bank Group 

(AfDB), Danish Cooperation for Environment and Development 
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(DANCED), Swiss Agency for Development and Cooperation (SDC), 

UNICEF). The map should serve efforts to raise awareness within the 

African Minister’s Council on Water (AMCOW), particularly AMCOW 

Groundwater Commission on the strategic importance and 

vulnerability of groundwater resources throughout Africa. In other 

words, the study will support AMCOW to help African countries 

towards a situation where groundwater resources are valued, 

protected and utilized sustainably by empowered stakeholders for the 

achievement of the UN Sustainable Development Goal 6. 
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Chapter 5 A meta-analysis and statistical 

modelling of nitrates in groundwater at 

the African scale2  

                                                      
2 Based on: Ouedraogo, I., and Vanclooster, M. (2016). A meta-analysis and 

statistical modelling of nitrates in groundwater at the African scale. In: Hydrology 

and Earth System Sciences, Vol. 20, no.6, p. 2353-2381. DOI: 10.5194/hess-20-2353-

2016. 
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5.1 Abstract 

Contamination of groundwater with nitrate poses a major health risk 

to millions of people around Africa. Assessing the space-time 

distribution of this contamination, as well as understanding the factors 

that explain this contamination is important to manage sustainable 

drinking water at the regional scale. This study aims to assess the 

variables that contribute to nitrate pollution in groundwater at the 

African scale by statistical modelling. We compiled a literature 

database of nitrate concentration in groundwater (around 250 studies) 

and combined it with digital maps of physical attributes such as soil, 

geology, climate, hydrogeology and anthropogenic data for statistical 

model development. The maximum, medium and minimum observed 

nitrate concentrations were analysed. In total, 13 explanatory variables 

were screened to explain observed nitrate pollution in groundwater. 

For the mean nitrate concentration, 4 variables are retained in the 

statistical explanatory model: (1) depth to groundwater (shallow 

groundwater, typically <50m); (2) recharge rate; (3) aquifer type; and 

(4) population density. The first three variables represent intrinsic 

vulnerability of groundwater systems towards pollution while the 

latter variable is a proxy for anthropogenic pollution. The model 

explains 65 % of the variation of mean nitrate contamination in 

groundwater at the African scale. Using the same proxy information, 

we could develop a statistical model for the maximum nitrate 

concentrations that explains 42 % of the nitrate variation. For the 

maximum concentrations, other environmental attributes such as soil 

type, slope, rainfall, climate class and region type improve the 

prediction of maximum nitrate concentrations at the African scale. As 

to minimal nitrate concentrations, in the absence of normal 

distribution assumptions of the dataset, we do not develop a statistical 

model for these data. The data based statistical model presented here 

represents an important step toward developing tools that will allow 

to accurately predict nitrate distribution at the African scale and thus 
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may support groundwater monitoring and water management that 

aims to protect groundwater systems. Yet they should be further 

refined and validated when more detailed and harmonized data 

becomes available and/or combined with more conceptual 

descriptions of the fate of nutrients in the hydrosystem.   

5.2 Introduction 

Nitrate contamination of groundwater is a common problem in many 

parts of the world. Elevated nitrate concentrations in drinking water 

can cause methemoglobinemia in infants and stomach cancer in adults 

(Yang et al., 1998; Knobeloch et al., 2000; Hall et al., 2001). As such, the 

World Health Organization (WHO) has established a maximum 

contaminant level (MCL) of 50 mg L-1 NO3 (WHO, 2004). Nitrate in 

groundwater is generally from the anthropogenic origin and 

associated with leaching of nitrogen from agriculture plots or from 

waste and sewage sanitation systems. The heavy use of nitrogenous 

fertilizers in cropping system is the largest contributor to 

anthropogenic nitrogen in groundwater worldwide (Suthar et al., 

2009). In particular, shallow aquifers in agricultural fields are highly 

vulnerable to nitrate contamination (Böhlke, 2002; Kyoung-Ho et al, 

2009). According to Spalding and Exner (1993), nitrate may be the most 

widespread contaminant of groundwater. 

 

In Africa, groundwater is recognized as playing a very important role 

in the development agenda. According to Xu and Usher (2006), 

degradation of groundwater is the most serious water resources 

problem in Africa. The two main threats are overexploitation and 

contamination (MacDonald et al., 2013). Furthermore, Xu and Usher 

(2006) showed that the major sources of groundwater contamination 

are related to on-site sanitation, to the presence of solid waste 

dumpsites, including household waste pits, to infiltration of  surface 

water, to agricultural activities, to the presence of  petrol service 

stations (underground storage tanks), and to the mismanagement of 
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wellfields. Nitrate contamination of groundwater is a problem that 

commonly occurs in Africa, as illustrated in the studies for  Algeria 

(Rouabhia et al., 2010; Messameh et al., 2014), Tunisia (Hamza et al., 

2007; Anane et al., 2014), Morocco (Bricha et al., 2007; Fetouani et al., 

2008; Benabbou et al., 2014), Senegal (Sall and Vanclooster, 2009; 

Diédhiou et al., 2012),  Ivory Coast (Loko et al., 2013; Eblin et al., 2014), 

Ghana (Tay and Kortatsi, 2008; Fianko et al., 2009 ), Nigeria (Wakida 

and Lerner, 2005; Akoteyon and Soladoye, 2011; Obinna et al., 2014), 

South Africa (Maherry et al., 2009; Musekiwa and Majola, 2013), 

Ethiopia (BGS, 2001a; Bonetto et al., 2005) and Zambia (Wakida and 

Lerner, 2005). Several of these studies showed that pollution from 

anthropogenic activities is the main source of high and variable nitrate 

levels. For example, Comte et al. (2012) illustrates that the groundwater 

situated in the Quaternary sandy aquifer of the peninsula of Dakar is 

under strong anthropogenic pressure from the city of Dakar, resulting 

in important nitrate loadings. Such contamination problems are often 

retrieved in many metropoles in Africa. Notwithstanding the 

availability of all these studies at the local, regional or country level, 

no comprehensive synthesis of nitrate contamination of groundwater 

at the scale of the African continent has been presented in the 

literature. Assessing large-scale groundwater contamination with 

nitrates is important for the planning of the large-scale groundwater 

exploitation programs and for designing transboundary water 

management policies. It yields also important baseline information for 

monitoring progress in the implementation of the United Nations 

Sustainable Development Goals (UN SDGs) for water. According to 

Saruchera and Lautze (2015), transboundary water cooperation has 

emerged as an important issue in the post-2015 United Nations (UN) 

Sustainable Development Goals (SDGs). This study will increase 

awareness of citizens, international agencies and authorities (e.g. FAO, 

UNEP, and OECD; Water Sanitation for Africa (WSA)) of the 

environmental factors likely to be significant to groundwater 

contamination. However, making an appropriate African scale 
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synthesis of nitrate contamination of groundwater remains a scientific 

and technical challenge, given the heterogeneity of the nitrate 

monitoring programmes and the absence of administrative and 

institutional capacity to collect and diffuse the data at the African scale.  

A concept that partially helps to solve this urgent data management 

problem is the concept of groundwater vulnerability. Groundwater 

vulnerability for nitrate contamination is an expression of the 

likelihood that a given groundwater body will be negatively affected 

by nitrate contamination. Given that the vulnerability is a likelihood, 

it is only an expression of the potential degradation of groundwater 

and hence a proxy of groundwater contamination by nitrates.  

Groundwater vulnerability can be assessed based on available generic 

data. It does therefore not depend on a strong and operational Africa 

groundwater quality monitoring capacity. In this chapter, we propose 

and implement a methodology for assessing the vulnerability of 

groundwater contamination by nitrates at the African scale.  We 

further consider nitrate in this study as a proxy for overall 

groundwater pollution, which is consistent with the view of the US 

EPA (EPA, 1996).  

 

In general, there are three categories of models for the assessment of 

groundwater vulnerability: (1) index methods or subjective rating 

methods, (2) statistical methods and (3) process-based modelling 

methods.  Index-and-overlay methods are one set of subjective rating 

methods that utilize the intersection of regional attributes with the 

qualitative interpretation of data by indexing parameters and 

assigning a weighting scheme. The most widely used index method is 

DRASTIC (Aller et al., 1985). Unfortunately, index methods are based 

on subjective rating methods (Focazio et al., 2002) and should 

preferably be calibrated using measured proxies of vulnerability 

(Kihumba et al., 2015; Ouedraogo et al., 2016). When a groundwater 

monitoring dataset is available, formal statistical methods can be used 

to integrate groundwater contamination data directly in the 
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vulnerability assessment. Finally, process-based methods refer to 

approaches that explicitly simulate the physical, chemical and 

biological processes that affect contaminant behaviour in the 

environment. They comprise the use of deterministic or stochastic 

process-simulation models, eventually linked to physically based field 

observations (e.g. Coplen et al., 2000). Physically process-based 

methods are typically applied at small scales, mostly to define well 

protection zones, rather than to assess groundwater vulnerability at 

broader scales (Frind et al., 2006). A well-known example is the use of 

a physical based groundwater model (e.g. MODFLOW,  Harbaugh et 

al., 2000) that solve the governing equations of groundwater flow and 

solute transport. Such models have explicit time steps and are often 

used to determine the timescales of contaminant transport to wells and 

streams, in addition to the effects of pumping. However, they also have 

many parameters that require estimation.  In this chapter, we use 

statistical models to assess the vulnerability of groundwater systems 

towards nitrate pollution.  

 

Formal statistical methods have often be deployed to assess the 

vulnerability of groundwater at national and regional scales. They are 

also often used to discriminate contaminant sources and to identify 

factors contributing to contamination (Kolpin, 1997; Nolan and Hitt, 

2006). Many authors used multiple linear regression (MLR) 

techniques. For example, Bauder et al. (1993) investigated the major 

controlling factors for nitrate contamination of groundwater in 

agricultural areas using MLR of land uses, climate, soil characteristics, 

and cultivations types. MLR was also used to relate pesticide 

concentrations in groundwater to the age of the well, land use around 

the well, and the distance to the closest possible source of pesticide 

contamination (Steichen, et al., 1988). Boy-Roura et al. (2013) used MLR 

to assess nitrate pollution in the Osona region (NE Spain). Amini et al., 

(2008a, b) used MLR and Adaptive Neuro-Fuzzy Inference System 

(ANFIS), a general non-linear regression technique, to study the global 
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geogenic fluoride contamination in groundwater and the global 

geogenic arsenic contamination in groundwater respectively. MLR has 

the strong advantage that regression coefficients can directly be 

interpreted in terms of the importance of explaining factors. Many 

studies linking nitrate occurrence in groundwater to spatial variables 

have employed logistic regression (Hosmer and Lameshow, 1989; 

Eckardt and Stackkelberg, 1995; Tesoriero and Voss, 1997; Gardner and 

Vogel, 2005; Winkel et al., 2008; and Mair and El-kadi, 2013). According 

to Kleinbaum (1994), MLR is conceptually similar to logistic 

regression. Other authors have used more sophisticated approaches 

such as Bayesian methods (Worrall and Besien, 2005; Mattern et al., 

2012) and, more recently, classification and regression tree modelling 

approaches (Burow et al., 2010; Mattern et al., 2012).  However, to our 

knowledge, a statistical model of groundwater nitrate contamination 

at the African scale does not exist yet.  

In the present study, we used MLR techniques to assess the 

vulnerability of nitrate groundwater pollution at the African scale. To 

this end, we compiled at the African scale groundwater pollution 

database from the literature and combined it with environmental 

attributes inferred from a generic data basis. The generic data basis was 

developed in a former study to assess vulnerability using the 

DRASTIC index method (Ouedraogo et al., 2016). MLR models were 

subsequently identified to explain quantitatively the log transformed 

observed nitrate contamination in terms of generic environmental 

attributes and finally, the regression models were interpreted in terms 

of characteristics of contaminants sources and hydrogeology of the 

African continent.  

5.3 Data and methods 

5.3.1 Nitrate contamination data 

For a large part of Africa, there is very little, or no systematic 

monitoring of groundwater. In the absence of data systematic 
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monitoring program, we compiled nitrate pollution data at the African 

scale from different literature sources. We considered approximately 

250 published papers on nitrate contamination of groundwater in 

Africa. We consulted the web of sciences (ScopusTM, Sciences DirectTM, 

GoogleTM, and Google ScholarTM) and available books. Figure 5-1 

shows the spatial distribution of the considered field studies. Table 5-1 

outlines criteria used in the web search.  

Table 5-1: Criteria used to identify nitrate data studies within web data bases. 

Search engine Search criteria 

Google, Google Scholar, and 

Google Books 

  

  

  

  

  

  

  

Groundwater pollution + Africa 

Nitrate in groundwater + “African country name” 

or “African capital city name” 

Groundwater quality + Africa 

Nitrate and agricultural practices in Africa 

Groundwater vulnerability + “African country 

name” 

Pollution des eaux souterraines par les 

nitrates+  ‘’nom du pays Africain’’ (in French) 

Pollution des eaux souterraines + "nom du pays 

Africain" (in French) 

Nitrate concentrations under irrigated agriculture 

+ “African country name” 

Web of Sciences, Scopus and 

Sciences Direct 

  

  

  

  

  

  

  

Groundwater pollution by nitrate + “African 

country name” 

Nitrate in groundwater +  “Africa capital city 

name” 

Pollution des eaux souterraines par les nitrates + 

"nom du capital des pays"(in French) 

Groundwater contamination by nitrate + “Africa 

countries” or  “African capital city name” 

Africa irrigated agriculture + nitrate 

Groundwater contamination by nitrate + “Africa 

country name” or  “African capital city name” 

Nitrate concentrations under irrigated agriculture 

+ “African country name” 

Groundwater vulnerability to nitrate 

contamination + “Africa country name” or  

“African capital city name” 

Books 
Groundwater pollution in Africa ( Xu and Usher, 

2006) 
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Figure 5-1: Distribution of studies identified across Africa 

5.3.2 Data quality evaluation 

We used the following additional criteria to select the study: the 

publication should explicitly report on nitrate concentrations in 

groundwater; and the publication should be published after 1999. 

Also, when many articles have been published on the same field site, 

we used only the most recent study. We excluded older studies before 

1999 since the intensity of human activities is expected to be 

significantly different after 1999. We eliminated 37 articles because no 

quantitative data on nitrate concentration were reported. For the 

considered data set, 206 studies report on the maximum concentration 

of nitrate, 187 studies on the minimum concentration of nitrate, and 94 

studies on the mean concentration of nitrate. Out of the 94 datasets for 

which mean values were reported, 12 field sites have nitrate 
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concentration smaller than 1 mg/L. We present the locations and 

references of the considered field studies in Table 5-2. In case spatial 

coordinates were not reported in the selected paper, we allocated the 

coordinates of the field study in Google Earth using the www.gps-

coordintes.net and www.mapcoordinates.net applications. As an 

example, we present in Figure 5-2 the identified locations and reported 

maximum nitrate values of the selected studies. The absence of exact 

spatial coordinates in many studies will, therefore, generate a 

positioning error in the analysis. However, given the extent of the 

study, i.e. the African continent, we consider that this positioning error 

will not have significant effects on the overall results.  The 

groundwater pollution risk in Figure 5-2 corresponds to the potential 

of a groundwater body for undergoing groundwater contamination 

(Farjad et al., 2012). The risk of pollution is determined both by the 

intrinsic vulnerability of the aquifer, which is relatively static, and the 

existence of potentially polluting activities at the soil surface. These 

latter activities are time dynamic and can be controlled (Saidi et al, 

2010). We generated the groundwater pollution risk map by 

combining the intrinsic groundwater vulnerability map with the land 

use map, using the additive model of Secunda et al. (1998).  Details of 

these procedures are given by Ouedraogo et al. (2016). 

 

 

 

http://www.gps-coordintes.net/
http://www.gps-coordintes.net/
http://www.mapcoordinates.net/
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Figure 5-2:The locations and the maximum values of nitrate in Africa superimposed 

on risk pollution map as generated in the previous generic vulnerability study of 

Ouedraogo et al. (2016) 

5.3.3 Determination of spatial explanatory variables 

Table 5-3 lists the environmental attributes and data sources that we 

considered for explaining the observed nitrate contamination. These 

variables represent both anthropogenic and natural factors and were 

derived from multiple sources of information. The attributes are 

related to recharge, geology, hydrogeology, soil texture, land use, 

topography and pollution pressure and were partially inspired by the 

DRASTIC vulnerability mapping approach. We compiled all 

explanatory variables in a common GIS environment (ArcGIS 10.3TM), 

using a common projection and resolution (15 km x 15 km) at the 

1:60.000.000 scale. This spatial resolution was chosen because we have 

considered that she was a reasonable compromise between different 

resolutions of the different datasets, computing constraints and 

regional extent. Indeed, this grid cell dimension has been used to map 

the vulnerability and risk pollution maps at the African scale 

(Ouedraogo et al. 2016). Generic variables at the grid scale were 

extracted to build our explanatory variables in this study. Most of these 

variables were categorical, but some were continuous. 
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Groundwater recharge is considered as a primary explaining variable 

because recharge is the primary vehicle by which a contaminant is 

transported from the ground surface to groundwater. Groundwater 

recharge to an unconfined aquifer is a function of precipitation, runoff, 

and evapotranspiration. The latter is related to vegetation and/or soil 

type. Groundwater recharge to a confined aquifer is generally more 

complex, as consideration must be given to the location of the recharge 

zone and the influence of any confining layers, vertical gradients, and 

groundwater pumping (Todd Engineers and Kennedy/Jenks 

Consultants, 2010). In this study, we derived the African recharge map 

from the global-scale groundwater recharge model of Döll and Fiedler 

(2008). We also considered independent climate data as alternative 

proxies of recharge.  Hence, we considered the climate and region type 

data class as defined by Trambauer et al. (2014). We also considered 

the rainfall map as generated from the UNEP/FAO World and Africa 

GIS Data Base. The spatial resolution of this latter dataset is 

approximately 3.7 km. 

 

Subsequently, we selected a set of environmental attributes related to 

aquifer type, groundwater position and the substrate that protects the 

aquifer. The depth to groundwater represents the distance that a 

contaminant must travel through the unsaturated zone before reaching 

the water table or to the first screen. We mapped the depth to water 

based on the data presented by Bonsor et al. (2011). The slope of the 

land surface is important with respect to groundwater vulnerability 

because it determines the potential of a contaminant to infiltrate into 

the groundwater or be transported horizontally as runoff.  We inferred 

the slope from the 90-meter Shuttle Radar Topography Mission 

(SRTM90) topographic map, using the Spatial Analyst software of 

ArcGIS10.2TM. We derived the aquifer type and the impact of vadose 

zone material from the high resolution global lithological database 

(GliM) of Hartmann and Moosdorf (2012). We determined aquifer type 
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and unsaturated lithological zone for each of the five hydro-

lithological and lithological categories as defined by Gleeson et al., 

(2014). These categories are: unconsolidated sediments, siliciclastic 

sediments, carbonate rocks, crystalline rocks, and volcanic rocks 

(Gleeson et al., 2014). We constructed the soil type map from the 1 km 

resolution soil grid database developed by Hengl et al. (2012). We 

determined the hydraulic conductivity of aquifers from the Global 

Hydrogeology MaPS (GHYMPS) dataset (Gleeson et al., 2014). For the 

determination of the land use at the African scale, we used the high-

resolution land cover/land use map from the GlobCoverdataset 

(Defourny et al., 2014). There are twenty-two (22) classes of land cover 

that represents Africa in this dataset. We aggregated these 22 classes 

into 6 similar classes (water bodies, bare area, grassland/shrubland, 

forest, urban, croplands) as represented in the Figure 5-3 and then 

regrouped them in 5 groups (water bodies, forest/bare area, 

grassland/shrubland, croplands, urban area).  

 

Finally, we considered a set of variables related to possible pollution 

pressure. We considered the application of fertilizer in the agricultural 

sector as a possible explanatory variable. We generated the nitrogen 

fertilizer application map from the Potter et al. (2010) data set. The 

values shown on this map represent an average application rate for all 

crops over a 0.5° resolution grid cell. Following this study, the highest 

N fertilizer application rate (i.e. 220 kg ha-1) is found in Egypt’s Nile 

Delta. We further considered population density as a proxy of 

pollution source.  We considered the population density map for the 

year 2000, as produced by Nelson (2004).  
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Figure 5-3: Land Cover/Land Use map of Africa (modified from Defourny et al., 

2014)
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Table 5-2: Localisation of study sites considered in the meta-analysis 

Country Localisation  
Number of studies 

per country 
References 

Algeria 

North east of Algeria 

11 

Labar et al.(2012a) 

Ouargla phreatic aquifer in Algeria: 

Valley of OuedM'y a 
Semar et al.(2013) 

Nord-Algerian aquifer ( Mitidija) Sbargoud (2013) 

Medja area Rouabhia et al.(2010) 

Biskra Messameh et al.(2014) 

Case Skikda Labar et al.(2012b) 

El Eulma Belkhiri and Mouni (2012) 

Mostaganem, Mecheria,  Naama, 

Tiaret, Bechar, and Adrar 
Bahri and Saibi, (2012) 

Southern Hodna Abdesselam et al.(2012) 

Tlemcen Abdelbaki et al.(2013) 

Merdja plain Rouabhia et al.(2009) 

Angola Angola  1 Angola Water Works (2013) 

Benin 

Cotonou  

6 

Totin et al.(2013) 

Beninese coastal basin Totin et al.(2010) 

Municipality of  Pobè Lagnika et al.(2014) 
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Country Localisation  
Number of studies 

per country 
References 

Dongo-pont  Bossa et al.(2012) 

Cotonou BGS (2003b) 

Cotonou Xu and Usher (2006) 

Bostwana 

Rural Bostwana 
3 

Batisani (2012) 

Kalahari Stadler et al.(2004) 

Eastern fringe of the Kalahari near 

Serowe  
Stadler et al.(2008) 

Burkina Faso 

Burkina Faso 

4 

BGS (2002) 

Burkina Faso  Pavelic et al.(2012) 

Sourou Valley Rosillon et al.(2012) 

Ouagadougou Xu and Usher (2006) 

Cameroon 

Mingoa River basin/Yaounde 

10 

Tabue et al.(2012) 

Bafoussam Mpakam et al.(2009) 

Coastal zone of Cameroon/Douala Nougang et al.(2011) 

Logon Valley/Chad-Cameroun Sorlini et al.(2013) 

Anga's river Kuitcha et al.(2013) 

Rio del Rey Basin/South Western 

Coast  
Wotany et al.(2013) 

Mingoa/Yaounde catchment Tabue et al.(2009) 



148 

Country Localisation  
Number of studies 

per country 
References 

2 areas of Cameroon and Chad in 

the Lake Chad basin 
Ngatcha and Daira (2010) 

Dschang Municipality Temgoua (2011) 

Cameroon  Xu and Usher (2006) 

Central African 

Republic 
Bangui area 

1 
Djebebe-Ndjiguim et al.(2013) 

Congo-

Brazzaville 

Brazzaville 

5 

Matini et al. (2012) 

Brazzaville Barhe and Bouaka (2013) 

Souht East Brazaville Laurent et al. (2010) 

Souht East Brazaville Laurent and Marie (2010) 

South West Brazzaville Matini et al.(2009) 

Egypt 

Alexandria 

7 

Abd El-Salam and Abu-Zuid 

(2015) 

Helwan  Abdalla and Scheytt (2012) 

Nile Valley Abdel-Lah and Shamrukh (2001) 

Tahta Easa and Abou-Rayan (2010) 

Kafr Al-Zayet District  Masoud (2013) 

Nile Delta aquifers / Western Nile 

Delta 
Sharaky et al.(2007) 

Cairo, Egypt / province of Giza Sadek and El-Samie (2001) 
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Country Localisation  
Number of studies 

per country 
References 

Ethiopia 

Dire Dawa 

13 

Abate (2010) 

Ethiopia BGS (2001a) 

Raya valley Bushra (2011) 

Adis Ababa Engida (2001) 

Addis Ababa Kahssay et al.(2010) 

Koraro/Tigray Nedaw (2010) 

Ethopia  Pavelic et al.(2012) 

Bulbule and Zway Bonetto et al.(2005) 

Haromaya Watershed, Eastern 

Ethiopia 
Tadesse et al.(2010) 

Akaki Tegegn (2012) 

Adis Ababa Xu and Usher (2006) 

Dire Dawa of Sabian area Tilahun and Merkel (2010) 

Wondo Genet District, Southern 

Ethiopia 
Haylamicheal and Moges (2012) 

Ghana 

Ga East 

14 

Ackah et al.(2011) 

Sawla-Tuna-Kalba District  Cobbina et al.(2012) 

Akatsi,  Adidome and Ho Districts Ansa- Asare et al.(2009) 

Ghana BGS (2000a) 
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Country Localisation  
Number of studies 

per country 
References 

Six districts in the eastern region of 

Ghana 
Fianko et al.(2009) 

Kwahu West District Nkansah et al.(2010) 

Ga-East District of Accra( Taifa) Nyarko (2008) 

Ghana  Obuobie and Barry (2010) 

Ghana  Pavelic et al.(2012) 

Densu basin Tay and Kortatsi (2008) 

Contamination in Ghana Xu and Usher (2006) 

Western Region of Ghana Affum et al.(2015) 

Gold Mining area in Ghana/Tarkwa Armah et al.(2012) 

Lower Pra Basin of Ghana Armah (2010) 

Guinea-Biseau Boloma 1 
Bordalo and Savva-Bordalo 

(2007) 

 

 

 

 

 

 

 

Bonoua  

 

 

 

 

 

 

Abenan et al.(2012) 

Bondoukou region Ahoussi et al.(2012) 

Bonoua aquifer (South-East Ivory 

Coast) 
Ake et al. (2010) 

Abidjan District Douagui et al. (2012) 

Adiaké Region Eblin et al. (2014) 

Abidjan and Korhogo Kouame et al. (2013) 
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Country Localisation  
Number of studies 

per country 
References 

 

Ivory Coast 

Abidjan aquifer  

 

16 

Xu and Usher (2006) 

South-West Ivory Coast Yao et al. (2013) 

N'zi-Comoé (Centre East Ivory 

Coast) 
Kouassi et al. (2010) 

Guiglo-Douekoué (West Ivory 

Coast) 
Kouassi et al. (2012) 

N'zi, N'Zianouan 

municipality(South Ivory Coast) 
Ahoussi et al. (2012) 

Bandama basin at Tortiya(Nothern 

Ivory Coast) 
Drissa et al. (2013) 

Abia Koumassi village/Abidjan Loko et al. (2013a) 

Slums of Anoumabo (Marcory) and 

AdjouffouPort-Bouet 
Osemwegie et al. (2013) 

Catchment Ehania, South-Eastern 

Ivory Coast 
Dibi et al. (2013) 

Hiré , South-West of Ivory Coast Loko et al. (2013b) 

Kenya Kisaumi, Mombasa 1 Xu and Usher (2006) 

Libya 

North-East Libya 

3 

Nair et al. (2006) 

Alshati Salem and Alshergawi (2013) 

North East Jabal Al Hasawnah Sanok et al. (2014) 
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Country Localisation  
Number of studies 

per country 
References 

Malawi 

Lake Chilwa basin 

4 

Xu and Usher (2006) 

Chikhwawa Grimason et al. (2013) 

Upper Limphasa River/Nkhata-Bay 

district 
Kanyerere et al. (2012) 

Blantyre Mkandawire (2008) 

Mali 

Bamako city 

3 

Xu and Usher (2006) 

Mali  Pavelic et al. (2012) 

Timbuktu Cronin et al. (2007) 

Mauritania Mauritania 1 Friedel (2008) 

Morocco 

Oued Taza 

16 

Ben Abbou et al. (2014) 

Taldla plain Aghzar et al. (2002) 

Marrakesh Alaoui et al. (2008) 

Meknès region Belghiti et al. (2013) 

Oum Azza of Rabat Benabbou et al. (2014) 

Phreatic aquifer of M'nasra Bricha et al. (2007) 

Taldla plain EL Hammoumi et al. (2013) 

Mzamza-Chouia Asslouj et al. (2007) 

Berrechid plain EL Bouqdaoui et al. (2009) 

Taldla plain El Hammoumi et al. (2012) 

Triffa plain Fekkoul et al. (2011) 
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Country Localisation  
Number of studies 

per country 
References 

Triffa plain Fetouani et al. (2008) 

Essaouira Basin  Laftouhi et al. (2003) 

Phreatic aquifer of Martil Lamribah et al. (2013) 

Casablanca Smahi (2013) 

Souss-Massa basin (South-west 

Morocco) 
Tagma et al(2009) 

Mozambique 
Lichinga 

2 
Cronin et al. (2007) 

Maputo city Muiuane (2007) 

Niger 

Niamey  

3 

Chippaux et al.(2002) 

Niamey Hassane (2010) 

Niamey Abou (2000) 

Nigeria 

Uzouwani (South Eastern Nigeria)  

 

 

 

 

 

 

 

 

Ekere (2012) 

Lagos Adelekan and Ogunde (2012) 

Ondo State Akinbile (2012) 

Southwestern Abeokuta Aladejana and Talabi (2013) 

Lagos Anthony (2012) 

Lagos-State Balogun et al. (2012) 

Nigeria BGS (2003a) 

Konduga town Dammo et al. (2013) 

Abuja Dan-Hassan et al. (2012) 
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Country Localisation  
Number of studies 

per country 
References 

Nigeria  

24 

Edet et al. (2011) 

Edo State/ South-South  Imoisi et al. (2012) 

Jimeta-Yola (Northeastern of 

Nigeria) 
Ishaku (2011) 

Eastern Niger Delta Nwankwoala and Udom (2011) 

Anambra State Obinna et al. (2014) 

Lagos  Ojuri and Bankole (2013) 

Afikpo basin Omoboriowo et al. (2012) 

Benue State Ornguga (2014) 

Nigeria  Palevlic et al.(2012) 

Niger Delta Rim-Rukeh et al. (2007) 

Igbokoda, Southwestern Nigeria Talabi (2012) 

Lagos Wakida and Lerner (2005) 

Nigeria Xu and Usher (2006) 

Abia state Obi and George (2011) 

Eti-Osa, Lagos Akoteyon and Soladoye (2011) 

Republic 

Democratic of 

Congo 

Kahuzi-Biega Nationals Parks 

2 

Bagalwa et al. (2013) 

Kinshasa Longo (2009) 

Senegal Dakar Region  7 Brandvold (2013) 
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Country Localisation  
Number of studies 

per country 
References 

Thiaroye Madioune et al. (2011) 

Niayes region Sall and Vanclooster (2009) 

Dakar Wakida and Lerner (2005) 

Dakar Xu and Usher (2006) 

Dakar Diédhiou et al. (2012) 

Yeumbeul/Dakar BGS (2003b) 

Somalia Somaliland and Puntland 1 FAO-SWALIM (2012) 

South Africa 

South Africa 

6 

Maherry et al. (2009) 

Philippi/Western Cape  Aza-Gnandji et al. (2013) 

Mpumalanga Province 
Mpenyana-Monyatsi and 

Momba (2012) 

South Africa Musekiwa and Majola (2013) 

South Africa Pavelic et al. (2012) 

Hex River Valley; Sandveld; 

Hertzogville 
Xu and Usher (2006) 

Sudan 

Southern Suburb of the Ondurman 

5 

Abdellah et al. (2013) 

Khartoun Ahmed et al. (2000) 

Karrary Salim et al.(2014) 

Karrary Taha (2010) 

Khartoum Idriss et al. (2011) 
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Country Localisation  
Number of studies 

per country 
References 

Tanzania 

Tanzania 

8 

BGS (2000b) 

Dar es Salam De Witte (2012) 

Dodoma Kashaigili (2010) 

Kilimandjaro region McKenzie et al. (2010) 

Dar es Salam Mjemah (2013) 

Dar es Salam Mtoni et al.(2013) 

Tanzania Palevlic et al. (2012) 

Temekedistric/Dar es Salam Napacho and Manyele (2010) 

Tchad 

N'djamena 

3 

Guideal et al.(2010) 

Lake Chad basin  Seeber et al. (2014) 

Chad basin  Ngatcha and Daira (2010) 

Togo 
Agoè-Zongo 

2 
Kissao and Housséni (2012) 

Gulf/South of Togo Mande et al.(2012) 

Tunisia 

North-east of Tunisia (Korba 

aquifer) 

8 

Zghibi et al.(2013) 

Cap Bon Anane et al. (2014) 

Cap Bon Charfi et al.(2013) 

Djebeniana Fedrigoni et al.(2001) 

Metline-Ras Jebel-Raf Raf/North-

East 
Hamza et al., 2007 
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Country Localisation  
Number of studies 

per country 
References 

Sfax-Agareb Hentati et al.(2011) 

El Khairat aquifer Ketata et al.(2011) 

Chaffar/ South of Sfax Smida et al.(2010) 

Uganda 
Uganda 

2 
BGS (2001b) 

Kampala/Bwaise III Kulabako et al.(2007) 

 

 

Zambia 

Petauke Town 

4 

Mbewe (2013) 

John Laing and Misisi de Lusaka  Xu and Usher (2006) 

Copperbelt Province/(North 

Western Province; Lusaka Province 

; Central Province ; Southern 

Province) 

Nachiyunde et al.(2013) 

Lusaka Wakida and Lerner (2005) 

Zimbawe 
Kamangara 

2 
Dzwairo et al.(2006) 

Epworth at Harare Zingoni et al.(2005) 
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            Table 5-3: Explanatory variables used in the MLR analysis.  

Explanatory variables Type 
Units or 

Categories 

Spatial 

resolution/Scale 
Date Data source(s) 

Land Cover/Land Use Categorical data -  300 m 2014 1UCL/ELIe-Geomatics (Belgium) 

Population density Continuous point data people/km2 2.5 km 2004 ESRI : www.arcgis.com/home 

Nitrogen application Continuous point data kg/ha  0.5° x 0.5° 2009 
2SEDAC : 

www.sedac.ciesin.columbia.edu 

Climate class data Categorical data -  0.5° 1997 
Global-Aridity values (UNEP, 1987)/ 

(UNESCO-IHE, Delft, The Netherlands) 

Type of regions Categorical data -  0.5° 2014 
Global-Aridity values (UNEP, 1987)/ 

(UNESCO-IHE, Delft, The Netherlands) 

Rainfall class Categorical data mm/year 3.7 km 1986 UNEP : http://www.grid.unep.ch 

Depth to groundwater Categorical data m  0.5° x 0.5° 2012 
British Geological Survey:  

www.bgs.ac.uk/ 

Aquifer type Categorical data -  1:3750 000 2012 3GLiM data (Hamburg University) 

Soil type Categorical data  - 1 km × 1 km 2014 
ISRIC, World Soil Information: 

www.isric.org/content/soilgrids 

Unsaturated zone(impact of 

vadose zone) 
Categorical data  - 1:3750 000 2012 GLiM data (Hamburg University) 

Topography/Slope Continuous point data 
Percentage 

(%) 
90 m 2000 

UCL/ELIe-Geomatics (Belgium) and 
4CGIAR/CSI 

Recharge Continuous point data mm/year 5 km 2008 

Global-scale modelling of groundwater 

recharge 

 (University of Frankfurt)  

Hydraulic conductivity Continuous point data m/day 
Average size of 

polygon ~100km2 
2014 5GLHYMPS data (McGill University) 

      
1Université Catholique de Louvain/Earth and Life Institute/Environmental sciences; 2Socioeconomic Data and Applications Center (SEDAC); 3The new global lithological map 

database GLiM: A representative of rock properties at the Earth surface;  4Consultative Group for International Agricultural Research (CGIAR)/ Consortium for Spatial 

Information (CSI); 5A glimpse beneath earth’s surface: Global Hydrogeology MaPS (GLHYMPS) of permeability and porosity. 

http://www.arcgis.com/home
http://www.sedac.ciesin.columbia.edu/
http://www.grid.unep.ch/
http://www.isric.org/content/soilgrids
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5.3.4 Statistical model description 

We used Multiple Linear Regression (MLR) as the statistical method 

for identifying the relationship between the observed nitrate 

concentrations in groundwater and the set of independent variables 

given in Table 5-3. MLR is based on least squares, which means that 

the model is fitted such that the sum of squares of differences of 

predicted and measured values is minimized (Koklu et al., 2009; Helsel 

and Hirsh. (1992)). The MLR model is denoted as by Eq. (1):  

 

yi = β0 + ∑ βjxij + εi
n
j=1                               i=1, m,                       (1)                                                                                                      

where yi is the response variable at location i, β0 is the intercept, βj are 

the slope coefficients of the explanatory categorical or continuous  

variables xij, n the number of variables and m is the  number of 

locations or wells (number of studies here). εi is the regression residual. 

In this study, the response variable is the log transformed nitrate 

concentration in groundwater. The log transformation was needed to 

stabilize the variance and to comply with the basic hypothesis of MLR. 

The log transformed nitrate concentration is a continuous monotonic 

increasing function; it is, therefore, reasonable to accept that factors 

that contribute to the log transformed nitrate load will also contribute 

to the nitrate load. The explanatory variables were defined using a 

stepwise procedure, using the Akaike Information Criterion (AIC) as 

test statistic (Helsel and Hirsch, 1992).  We evaluated model 

performance based on the significance level of estimated coefficients, 

the coefficient of determination (R2), the mean square error (MSE), the 

probability plots of model residuals (PRES), the plots of predicted 

versus observed values and the Akaike Information Criterion (AIC). 

High values of R2 and low values of RMSE, PRES and AIC indicate a 

better performance of the model. To validate the model obtained by 

the stepwise procedure, the standard regression diagnostics were 

assessed. To test the heteroscedasticity in the model residuals, we use 

the Breusch-Pagan (BP) test by implementing with “lmtest” package. 
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A Student statistic t test was finally used to check the statistical 

significance (with p-values <0.10) of variables in the final model.  We 

assessed tolerance to examine if multicollinearity exists between 

variables. In this study, we performed the statistical analyses using the 

R version 3.1.1 (R Development Core team, 2015).  

5.4 Results 

5.4.1 Normality of the dependent variable 

Prior to analysis, we carefully checked the data using descriptive 

statistics, such as boxplots and correlation analysis. The observed 

nitrate concentrations through meta-analysis range from 0 mg/L to 

4625 mg/L for all categories, i.e. mean, maximum and minimum values 

of nitrate groundwater contamination. Descriptive statistics are 

summarized in Table 5-4. The average mean nitrate concentration is 

27.85 mg/L. The positive skewness of the mean nitrate concentration 

data and the kurtosis suggest that the mean nitrate concentration is not 

normally distributed. In contrast, the lognormally transformed mean 

nitrate concentration obeys normality, as demonstrated by means of 

the non-parametric Shapiro-Wilk test (p-value=0.1432>0.05). The 

histogram of mean and log transformed concentration is shown in the 

Figure 5-4. We also checked the minimum and maximum nitrate 

concentration for normality (see Appendix A and B respectively). 
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Table 5-4: Summary statistics of original and log (ln) transformed nitrate data. 

Statistic 
Maximum NO3- 

concentration 

Maximum ln(NO3-) 

concentration 

Mean NO3- 

concentration 

Mean ln(NO3-) 

concentration 

Minimum NO3- 

concentration 

Minimum ln(NO3-)  

concentration 

Number  of data (-) 206 206 82 82 185 185 

Minimum (mg/l or 

ln(mg/l))  

0.08 -2.52 1.26 0.231 0 0 

Maximum 

(mg/l or ln(mg/l)) 

4625 8.43 648 6.473 180 5.19 

Median 

(mg/l or ln(mg/l)) 

73.64 4.29 27.58 3.317 0.55 0.43 

Mean 

(mg/l or ln(mg/l)) 

190.05 3.99 54.85 3.169 8.91 1.08 

Variance ((mg/l)2 or 

ln(mg/l)2) 

183778.94 3.39 163.92 43.901 537.07 1.78 

CV (-) 225.56 46.18 8085.08 1.935 260.08 123.04 

Standard Deviation 

(mg/l or ln(mg/l)) 

428. 69 1.84 89.91 1.391 23.17 1.33 

Kurtosis 60. 24 0.90 23.99 -0.167 25.57 0.37 

Skewness 6.75 -0.74 4.31 -0.294 4. 56 1.2 
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Figure 5-4: Histograms of observed mean nitrate concentration (mg/l) and 

logtransformed mean nitrate concentration (ln (mg/l)) 

 

5.4.2 Correlation between nitrate in groundwater and 

explanatory variables 

Land Cover/Land Use is in general an important factor controlling 

groundwater contamination. Thus, the box plot distribution of log 

transformed mean nitrate concentration for different land use classes 

is presented in Figure 5-5. Groundwater in agricultural and urban 

areas is clearly more susceptible to nitrate pollution as compared to 

forest/bare area land use. Also, water bodies are susceptible to nitrate 

contamination but this result is likely spurious since only two studies 

support this category. We performed a similar analysis on the log 

transformed maximum and minimum nitrate concentration. The 

corresponding boxplots results can be obtained from the authors upon 

request. High values for log transformed maximum nitrate 

concentration are also found in urban and cropland areas. High values 

for log transformed minimum nitrate concentration are detected in 

croplands fields.  All analyses confirm that the highest nitrate pollution 

is retrieved in urban areas, immediately followed by agricultural areas. 
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The relation between the log transformed mean nitrate concentration 

and the population density is given in Figure 5-7a. We observe an 

increasing nitrate in groundwater related to increasing population. 

This explicit relationship between population density and nitrate 

concentration has a Pearson’s correlation of 0.632. This obviously 

confirms the importance of studying the population as a potential 

polluting parameter and its relevant correlation to nitrate occurrence 

in the groundwater at the African scale. 

 

Nitrogen fertilizer contributes significantly to an increase in crop 

yields, but excess nitrogen fertilizer generally pollutes groundwater 

(Green et al., 2005; Nolan et al., 2002). In the case of Africa, the impact 

of the nitrogen fertilizer application rate on log transformed mean 

nitrate concentration is illustrated in Figure 5-7b. Pearson’s correlation 

give a low relation (r=0.09). The analysis in this figure confirms that no 

clear relationship existing between fertilizer load and groundwater 

nitrate contamination. This can be linked to the relatively low fertilizer 

use in Africa, as compared to other continents. Indeed, most studies 

have nitrogen fertilizer dressings that are below 50 kg/ha. According 

to the FAO (2012), Africa accounts only for about 2.9 percent of the 

world fertilizer consumption in 2011.  

 

The distribution of the log transformed mean nitrate concentration 

data with depth is shown in Figure 5-7c. Apparently, no clear 

relationship exist between depth to groundwater and nitrate 

contamination. Pearson’s correlation give a poor correlation (r=0.004). 

However, careful analysis of this figure shows clearly that shallower 

wells  (7-25 m bgl and 25-50 m bgl)  are associated with higher values 

of log-transformed mean nitrate concentration, in contrast to the low 

values of log transformed nitrate concentrations found in the deeper 

groundwater systems ( >250 m bgl). 
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The relationship between the log transformed mean nitrate 

concentration and groundwater recharge can also be observed in 

Figure 5-7d. This figure shows that nitrate concentration in the 

groundwater decreases with recharge. This may due to dilution of 

nitrate charge.  We observe on this figure high nitrate concentrations 

in the very low recharge class (0-45 mm/year). This may be due to 

irrigation water return that feeds the groundwater and that is not 

integrated into the recharge calculations.  The analysis of Pearson’s 

correlation between recharge and log transformed mean nitrate give a 

r=-0.292. 

 

In this study, the aquifer systems for Africa are divided into five 

categories based on the lithological formations. Figure 5-6 shows the 

relation between mean log transformed nitrate concentration and 

aquifer system type class. The carbonates rocks, the unconsolidated 

sediments, and the siliciclastic sedimentary rocks represent 

respectively the first, the second and the third class in terms of nitrate 

contamination. The crystalline rock and volcanic rock aquifer classes 

are less contaminated. The high concentrations in the unconsolidated 

aquifer systems is a particular point of concern since this class is the 

most representative in terms of groundwater exploitation. The high 

concentrations in the carbonates rocks and fractured basalt can be 

explained by their high vulnerability related to the presence of solution 

channels and fractures. 

 

We performed similar correlation analysis on the log transformed 

maximum concentration and log transformed minimum concentration 

respectively. The different box plot diagram are reported in appendix 

section (see figures A 3 to A 8 and figures B 3 to B 7). Results of these 

analyses are coherent with the results for log transformed mean nitrate 

concentration. 
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Figure 5-5: Log transformed mean nitrate concentration for different land use classes 
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Figure 5-6: Log transformed mean nitrate concentration for different aquifer system classes 
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(a) (b) 

(c) (d) 

Figure 5-7:Log transformed mean nitrate concentration for different population density classes (a), nitrogen application rate 

classes (b), groundwater depth classes (c) and recharge classes (d). 
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5.4.3 Development of the multi-variate statistical model 

We developed a set of multiple variable regression models for the log 

transformed mean and maximum nitrate concentration in terms of 

above mentioned explanatory variables. A positive regression 

coefficient indicates a positive correlation between a significant 

explanatory variable and a target contaminant while a negative 

coefficient suggests an inverse or negative correlation. We retained 

only explanatory variables with p-values ≤ 0.1.  

 

The best model that explains the log transformed mean nitrate 

concentration includes only 4 explanatory variables: (1) depth to 

groundwater, (2) recharge, (3) aquifer type, and (4) population density. 

Table 5-5 summarizes the results of this linear regression model. This 

model can explain 65 percent of the log transformed mean nitrate 

concentration observations. The sign of the parameter coefficient 

indicates the direction of the relationship between independent and 

dependent variable (Boy-Roura et al., 2013).  The lower the p-value, the 

more significant is the model parameter.  

 

The regression analysis confirms the strong relationship between 

population density and log transformed mean nitrate concentration. 

As the p-value is far below 0.05, we are more than 95 % confident that 

the population density strongly affects the nitrate occurrences in 

groundwater. 

 

The aquifer medium is another important explanatory variable for log-

transformed mean nitrate concentration. Three categories of aquifer 

media are significantly explaining the dependent variables: carbonates 

rocks, crystalline, and unconsolidated sediments rocks. Indeed, the 

analyse of regression coefficients shows that the likelihood of nitrate 

contamination decreases with the presence of unconsolidated 

sediments and crystalline rocks.  Other aquifer types tested include 
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siliciclastic sedimentary rocks and volcanic rocks aquifers were found 

not statistically significant in the model. However, the aquifer media 

type is an important variable to assess groundwater vulnerability and 

to bring information about the hydrogeological system in the 

assessment. It allows differentiating the vulnerability in terms of 

aquifer lithology. Variables such as hydraulic conductivity could be 

surrogates for aquifer media because hydraulic conductivity data were 

developed based on the lithological formation. Nevertheless, they 

were not statistically significant in the final model.  

 

The third variable represents the depth to groundwater. The three first 

classes (0-7; 7-25 and 25-50 m bgl) of groundwater depth are all 

statistically significant.  The water table corresponding to the 0-7 m 

class has the strongest statistical significance. The positive parameter 

coefficient indicates large contamination for shallow groundwater 

depths. By analysing the table of the coefficients, we observe that the 

largest groundwater depth class (100-250 m bgl) is not statistically 

significant (p-value >0.05). We can conclude that the shallow 

groundwater systems at an African scale are most vulnerable to nitrate 

pollution. 

 

The fourth variable included in the final model is the recharge. The 

recharge rate in the 45-123 mm/year and 123-224 mm/year class are 

statistically significant. In general, these rates correspond to semi-arid 

and dry sub-humid regions. The high concentrations in these areas can 

be due to intensive agricultural activities.  

 

Other explanatory variables such as rainfall or land cover/land use 

were not considered in the final model. Indeed, notwithstanding a 

variable such as land cover/land use strongly influences observed log 

transformed mean nitrate concentration (Figure 5-5), it is related to 

other variables such as population density. Hence, to avoid 
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multicollinearity in the final model, the land cover/land use variable is 

no longer included in the final model.  

 

Table 5-5: Optimal linear regression model for explaining the log transformed mean 

nitrate concentration 

    Note: Statistical significance: ***p<0.001; **p<0.05; and *p<0.1. 

 

The final multiple linear regression (MLR) model using the four 

variables yields an R2 of 0.65, indicating that 65 % of the variation in 

observed log transformed mean nitrate concentration at the African 

scale is explained by the model. The result of the model is globally 

significant because the p-value =2.422e-10 at 95% of the significant 

level. The observed versus predicted log transformed mean nitrate 

concentration is shown in Figure 5-8 and indicates that the MLR fits 

the data well. The probability plot of model residuals indicates that 

they the distribution is close to normal (Figure 5-9). We performed the 

Shapiro-Wilk test as an additional check on the distribution of nitrate 

Coefficients:     

 Estimate Std. Error t value Pr (>|t|) 

(Intercept)                                                                    3.348e+00 6.624e-01 5.055 3.56e-06 *** 

Depth [0-7]                                                                    1.160e+00 3.895e-01 2.977 0.00404 ** 

Depth [7-25]                                                                    6.563e-01 3.693e-01 1.778 0.08002* 

Depth [25-50]                                                          1.114e+00 4.755e-01 2.342 0.02216 ** 

Depth [50-100]                                                          6.536e-01 4.005e-01 1.632 0.10744 

Depth [100-250]                                                     4.258e-01 6.766e-01 0.629 0.53129 

Recharge [0-45]                                                             -2.506e-01 6.089e-01 -0.412 0.68200 

Recharge [45-123]   -1.187e+00 6.055e-01 -1.961 0.05407* 

Recharge [123-224]                                                       -1.112e+00 6.134e-01 -1.812 0.07440* 

Recharge [224-355]                                                       -8.856e-01 6.089e-01 -1.455 0.15047 

Aquifer media [Crystalline rocks]                -9.851e-01 3.374e-01 -2.920 0.00477 ** 

Aquifer media [Siliciclastic 

sedimentary rocks]   

1.893e-02 3.916e-01 0.048 0.96158 

 

Aquifer media [Unconsolidated 

sediments rocks]     

-7.632e-01 3.384e-01 -2.255 0.02740 ** 

 

Aquifer media [Volcanic rocks]                   -5.245e-01 6.123e-01 -0.857 0.39469 

Population density (people/km2) 5.611e-04 6.887e-05 8.147 1.30e-11 *** 

Residual standard error: 0.9116 on 67 degrees of freedom 

Multiple R-squared: 0.65  

F-statistic: 8.693 on 14 and 67 DF, p-value=2.422e-10 < 0.001 
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residuals. Because the probability associated with the test statistic is 

larger than 0.05, we accept the null hypothesis that the residuals follow 

a normal distribution. Despite the fact that a few points have higher 

Cook D value compared to the rest of the observation, they were kept 

in the MLR to represent the whole range of nitrate concentration data. 

In order to check the regressions assumptions of homoscedasticity, a 

plot of the residuals of log transformed mean nitrate versus the 

predicted log transformed mean values is illustrated in Figure 5-10. We 

observe that the majority of observations are in the range of -2 to 2 

except for two outliers observed in the bottom left part of the graph. 

The residual standard error of the log transformed mean nitrate is 

0.91116 (ln (mg/L)). We observe that the residuals decrease with 

increasing predicted nitrate concentrations. The Breusch-Pagan test 

was used to assess heteroscedasticity in the model residuals 

(BP=24.2773 and p-value= 0.042). With a p-value of 0.042, we reject the 

null hypothesis that the variance of the residuals is constant and infer 

that heteroscedasticity is indeed present. As a result, we may expect 

some bias in the MLR model.  

 

Similarly to the log transformed mean nitrate concentration modelling, 

we developed another model corresponding to the log transformed 

maximum nitrate concentration. This model yielded only an R2= 0.42 

for the maximum values. The explanatory variables which influence 

the log transformed maximum nitrate concentration in groundwater 

are depth to groundwater, soil media, topography, rainfall, climate 

class and type of region. For the log transformed minimum 

concentration, the absence of normal distribution assumptions did not 

allow one to develop a MLR model.  

 

 



172 

 

 

Figure 5-8: Predicted versus observed mean log transformed nitrate concentration 

(R2=0.65) 
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Figure 5-9: Normal probability distribution of model residuals for the predicted log 

transformed mean nitrate concentration 

 



174 

 

 

Figure 5-10: Relation between residuals and predicted log transformed mean nitrate 

concentration. 

 

5.5 Discussion 

We present in this study a database collected through the meta-

analysis method to assess the vulnerability of groundwater systems for 

water quality degradation. We used the log transform of reported 

nitrate concentration as a proxy for groundwater vulnerability.   We 

present a statistical model to explain this proxy in terms of generic data 

at the African scale. In a previous study, we evaluated the 

groundwater vulnerability for pollution at the African scale using the 

generic DRASTIC approach (Ouedraogo et al., 2016). However, the 

uncalibrated DRASTIC model predictions are subjected to quite some 

uncertainty, in particularly due to the subjectivity in assigning the 
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generic DRASTIC model parameters.  In contrast to this previous 

study, we focus in this chapter on nitrate pollution which is a 

parameter that is strongly related to vulnerability and that often is 

measured in on-going monitoring programmes. We integrate 

published nitrate in groundwater data explicitly in the assessment, 

thereby reducing the subjectivity of the DRASTIC approach.  

We assessed in this study the quality of the data (Sect. 5.3.2).  Yet 

notwithstanding this, some caution is needed in the interpretation of 

the results, in particular as bias may be present in the meta-analysis. 

For instance, there may be bias towards studies on aquifers which are 

productive and used for drinking water supply, irrigation or mining 

activities. Another possible bias is that some studies mainly focussed 

on nitrates originated from point sources (e.g.,sewage sanitation 

systems, unsewered urbanization,…) and diffuse pollution (e.g. 

organic and chemical fertilizers applied on arable lands to increase 

crop cultivation, on grassland to increase grass production and on 

pastures to support cattle breeding, …), while others are oriented to 

more general groundwater quality studies. Furthermore, the data were 

collected from different sources (peer-reviewed journal articles, book 

chapters or other grey literature). With such approach, sampling and 

analytical methods are not standardised, being an additional source of 

possible bias. Data availability is a major issue when developing a 

continental-scale groundwater nitrate statistical model. 

Unsurprisingly there are no consistent and standardised monitoring 

datasets at the continental scale. The available data sets are also patchy, 

both spatially and temporally. A meta-analysis of literature data is so 

far the only method for getting the picture at the continental scale. 

Results from this meta-analysis should not be over-interpreted. Whilst 

the data provide a useful preliminary assessment into the nitrate 

contamination in groundwater at the African scale, there are clear 

limitations.  
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In this study, we used multiple linear regression (MLR) for explaining 

nitrate pollution groundwater in terms of other generic spatially 

distributed environmental variables. MLR is an approach to model the 

relationship between a response variable and multiple sets of 

explanatory variables (Rawlings et al., 1998). MLR analysis is capable 

of both predicting and explaining a response variable using 

explanatory variables without compromise (Kleinbaum et al., 1988).  

Previous studies of MLR using spatial variables for nitrate 

concentration in groundwater showed R2 values of 0.52 and 0.64 in 

shallow alluvial aquifers (Gardner and Vogel, 2005; Kaown et al., 2007) 

and R2 of 0.82 in deep sandy tertiary aquifers (Mattern et al., 2009). For 

the application in this study, we selected the parameters using 

stepwise MLR regression, allowing to select only those variables which 

have a significant impact on the log transformed concentration values 

of nitrate.  

The explanatory variables with the strongest influence on the mean log 

transformed nitrate concentration at the African scale are the 

population density and groundwater depth, which is in agreement 

with results from other studies such as Nolan, (2001),  Nolan et al., 

(2002), Nolan and Hitt (2006),  Liu et al., (2013),  Bonsor et al., (2011) 

and Sorichetta et al. (2013). Both explanatory variables are directly 

related to the probability of having high nitrate concentrations in 

groundwater. The strong influence of the population density variable 

can be explained by the serious problem of sanitation in Africa 

townships. This is consistent with the conclusions of the 

UNEP/UNESCO project ‘Assessment of Pollution Status and 

Vulnerability of Water Supply Aquifers Cities’, stating that the major 

pollution pressure on African water bodies are related to poor  on-site 

sanitation, solid waste dumpsites including household waste pits and  

surface water influences (Xu and Usher, 2006).  This is also consistent 

with other studies stating that that leaking septic tanks and sewer 

systems are considerably causing nitrate contamination of 
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groundwater in urban areas (Bohlke, 2002; Showers et al., 2008). The 

magnitude of contamination is not only affected by the population 

density but also by the socio-economic setting (UNEP/DEWA, 2014). 

A high population density is therefore often associated with the lack 

of adequate sanitation in many slums/shanty towns in Africa. The 

strong influence of population density in our model suggests that high 

concentrations in groundwater are mainly from subsurface leakage of 

municipal sewage systems, petrol service station (underground 

storage tanks), and agricultural chemicals in small scale farming. 

Lapworth et al. (2017) affirm that groundwater contamination does 

occur when waste from households, municipalities, livestock, 

agriculture, hospitals, and industries (including mining) is able to 

make its way inadequate management of household and industrial 

waste is leading to the pollution of groundwater resources in urban 

centres in sub-Saharan Africa. These authors add that: faecal waste is 

the largest source of contamination in urban (and rural) groundwater, 

in particular where there is high-density housing with poor and/or 

inadequate sanitation facilities and treatment of faecal waste and this 

situation is common in low-income areas of most major and growing 

urban centres in Africa. In this recent study, based on DRASTIC risk 

score for underlying aquifer vulnerability (from Ouedraogo et al.2016), 

Lapworth et al. (2017) demonstrated that the greatest nitrate 

contamination was in groundwater sources in settlements with 

extremely high population densities (over 40,000 people per km2), 

there was wide variation in study findings from aquifers with similar 

risk levels. Hence, sanitation programmes in Africa must not be 

delinked from groundwater protection and controlling the use of 

fertilizer products in agriculture. Hence, sanitation programmes in 

Africa must not be delinked from groundwater protection and 

controlling the use of fertilizer products in agriculture. Because, by 

listing the major sources of urban groundwater contamination in SSA, 

the authors Lapworth et al. (2017) cited urban agriculture and gave for 

example leached salts, fertilisers, pesticides and animal/human waste. 
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The others elements of this list are: Municipal/domestic waste: for 

example pit latrines, septic tanks, sewer leakage, sewage effluent, 

sewage sludge, urban road runoff, landfill/waste dumps and health 

care facilities; Industrial sources and waste: for example process 

waters, plant effluent, stored hydrocarbons, tank and pipeline leakage; 

mining activities: including both current and historical solid and liquid 

waste. 

 

Although the strong influence of population density factor on 

groundwater pollution by nitrate, particularly in extremely high 

population zones was highlighted; we think also that agricultural 

activities of small settlements in rural areas can made more damages 

on groundwater resources, than small cities with higher density of 

population to due to excessive use of fertilisers for example. 

 

Nitrate concentrations were generally higher for shallower wells than 

for deeper groundwater systems. For deep groundwater, predicted 

nitrate concentration was lower as compared to shallow groundwater 

(Nolan et al., 2014). Alluvial and shallow aquifers are thus particularly 

vulnerable to nitrate pollution while deep confined aquifers are 

generally better protected. The inverse relation between depth and 

nitrate is consistent with previous groundwater studies that 

considered well depth or depth of the screened interval as explanatory 

variables (Nolan and Hitt, 2006; Nolan et al., 2014; Wheeler et al., 2015; 

Ouedraogo and Vanclooster, 2016b).  Nitrate generally moves 

relatively slowly in soil and groundwater, and therefore there is a 

significant time lag between the polluting activity and detection of the 

pollutant in groundwater (typically between 1 and 20 years, 

depending on the situation) (Boy-Roura, 2013; Mattern and 

Vanclooster, 2009). Deeper groundwater may, therefore, predate 

periods of intensive fertilizer application (1950–present).  

The rate at which nitrate moves through the subsurface depends on 

the permeability and extent of fissuring of soil and aquifer, which 
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controls flow, diffusion and dispersion processes. According to Close 

(2010), nitrate is negatively charged and thus electrostatically repelled 

by media in unsaturated zone that usually have a negative charge, 

such as clay minerals. This means that nitrate sorption within the 

unsaturated zone is unlikely and that the large residence times are 

related to the slow physical transport process. Foster and Crease, 

(1974), and Young et al., (1976) were the first authors to mention a  

“storage of nitrate” in porewater and consequent slow vertical 

migration through the unsaturated zone towards groundwater 

systems. More recently, others investigators showed the process of 

nitrate accumulation in the unsaturated zone (Ascott et al., 2017; Ascott 

et al., 2016; Wang et al., 2016; Worall et al., 2015). The long travel 

distances towards deep aquifer systems increase the probability that 

nutrients will react for instance through denitrification (Stevenson and 

Cole, 1999; Thayalakumaran et al., 2004; Aljazzar, 2010; Wheeler et al., 

2015). Denitrification is facilitated by the absence of oxygen.  

Denitrification was found to be relatively limited in unsaturated zone 

(Kinniburgh et al., 1994; Rivett et al., 2008), while it is the principle 

process responsible for reduction of nitrate in groundwater (Aljazzar, 

2010, Stevenson and Cole, 1999; Thayalakumaran et al., 2004), in 

particular in reduced groundwater  (Burow et al.,2013).  Boy-Roura et 

al., (2013), for instance, found low nitrate concentrations (below 50 

mg/L) in those areas where denitrification processes have been 

identified. An indicator of the presence of denitrification processes 

contributed as such to explain nitrate contamination in the Osona 

region (NE Spain) (Boy-Roura et al., 2013). In our study, an indicator 

of the presence of denitrification processes in the groundwater system 

was not available and could not be included in the model. 

  

Another remark concerns the presence of nitrate in some specific 

geological formations. According to Tredoux and Talma (cited in Xu 

and Usher, 2006), an apparent correlation may exist between the 

occurrence of high nitrate levels and certain geological formations. The 
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apparent correlation however between the occurrence of high nitrate 

levels and certain geological formations is mainly due to secondary 

effects. Only in exceptional cases, geological formations can serve as a 

primary source of nitrogen. This happens when contamination ions are 

incorporated in rock minerals to be released by weathering and 

oxidized to nitrate.  These authors further concluded that in most cases, 

the occurrence of high levels of nitrate is due to contamination related 

to anthropogenic activities. 

 

The strong relation between nitrate contamination and both, 

groundwater depth and population density is a particular point of 

concern given the fact that the majority (85 %) of Africa’s population 

lives in regions where depth to groundwater is shallow (0-50 m bgl) 

and where  hand pumps may be used to abstract water. Eight percent 

of these people (i.e. nearly 66 million people) are likely to live in areas 

where depth to groundwater is 0-7 m bgl. A significant minority (8 %) 

of Africa’s population lives in regions where the depth to groundwater 

is between 50 and 100 m bgl and common hand pump technologies 

(e.g. India Mark) are inoperable in these cases.  These areas are mainly 

within southern Africa and to a lesser extent situated in the Sahel. 

 

A third important explanatory variable that was included in the model 

was the groundwater recharge rate. The recharge rate of an aquifer is 

indeed another factor that controls groundwater flow regime and 

hence the movement of nitrate. Nitrate can easily be transported to 

shallow groundwater in well-drained areas with rapid infiltration and 

highly permeable subsurface materials. However, according to a 

recent study in the shallow unconfined aquifer of the Piemonte plain, 

dilution can be considered as the main cause for nitrate attenuation in 

groundwater (Debernardi et al., 2007). The variable recharge in our 

model is consistent with studies like Hanson (2002) and Saffigna and 

Keeney (1997). According to UNEP/DEWA (2014), recharge from 

multiple sources influences groundwater microbial and chemical 
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water quality. Groundwater recharge rate is interlinked with many 

other environmental variables including, but not limiting, soil type, 

aquifer type, antecedent soil water content, land use/land cover type 

and rainfall (Sophocleous, 2004;  Ladekarl et al., 2005; Anuraga et al., 

2006). Hence, to avoid multi-collinearity, variables like land use/land 

cover type, rainfall, and soil type were not considered in the final 

model.  

Despite land cover/land use type is not explicitly included in the final 

model, the exploratory analysis clearly shows a strong relationship 

between nitrate concentration and land use/land cover type. Indeed, 

nitrate concentrations are generally higher in urban areas. This is 

consistent with many other studies such as Showers et al., (2008). The 

high contamination in urban areas jeopardises groundwater 

exploitation in urban areas. Urbanization is a pervasive phenomenon 

around the world, and groundwater demands in urban areas are 

increasingly growing. The degradation of groundwater bodies in 

urban areas is, therefore, a particular point of concern. Also, 

agricultural land exhibit an impact on groundwater nitrate 

concentrations compared to the grassland/shrubland, water bodies, 

and forest/bare area, but this effect is less important as compared to 

agricultural land effects in other parts of the world (e.g. Europe).  

 

The influence of aquifer type to the nitrate contamination was 

demonstrated by Boy-Roura et al., (2013) and the influence of soil type 

by Liu et al., (2013). As with land cover/ land use type, these variables 

were not retained in the final model to avoid collinearity with 

recharge.  

 

The advantage of the MLR technique is that it can be easily 

implemented and that model parameters can be easily interpreted if 

the possible interaction between variables is ignored. However, MLR 

cannot represent well the many non-linear dynamics that are 
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associated with the contamination of groundwater systems. The 

violation of the homoscedasticity hypothesis, for instance, indicates 

that some bias will be present in our MLR model. Standard statistical 

models employed in distribution modelling, such as MLR, work under 

the assumption of independence in the residuals and 

homoscedasticity. When heteroscedasticity is present, residuals may 

be autocorrelated. This will lead to inflated estimates in degrees of 

freedom, an underestimation of the residual variances and an 

overestimation of the significance of effects (Legendre and Fortin, 1989; 

Legendre, 1993; Dale and Fortin, 2002; Keitt et al., 2002). This may 

show that others variables should be included in the model or that the 

system may be highly non-linear. 

 

We could avoid heteroscedasticity and improve the modelling 

performance by introducing non-linear regression techniques (Prasad 

et al., 2006) or by introducing additional variables in the model.  

Indeed, many studies showed that non-linear statistical models of 

groundwater contamination outperform as compared to linear models 

(e.g. Pineros-Garcet et al., 2006; Mattern et al., 2009; Oliveira et al., 2012 

and Wheeler et al., 2015). To uncover non-linear relationships, non-

parametric data mining approaches provide obvious advantages 

(Olden et al., 2008; Wiens, 1989; Dungan et al., 2002). Machine learning 

provides a framework for identifying other explanatory variables, 

building accurate predictions, and exploring other non-linear 

mechanistic relationships in the system. We may, therefore, expect that 

non-linear statistical models will improve the explanatory capacity of 

the model and remove heteroscedasticity from the model.   

 

However, we believe that this theoretical constraint of 

heteroscedasticity does not undermine the overall results. The 

observed heteroscedasticity can be considered modest in view of the 

large extent of the study, and the violation of statistical design criteria 

when collecting data through a meta-analysis. Also, the interpretation 
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of the factors and coefficients associated with non-linear regression 

techniques become more complicated. We, therefore, prefer to 

maintain in this study the MLR techniques as a first approach to screen 

the factors that contribute to log transformed mean nitrate 

concentration risk.  We suggest however that future studies should 

address the added value that can be generated with non-linear 

modelling techniques.  Such non-linear modelling techniques are 

particularly needed for the maximum concentration for which the R2 

of simple MLR remains currently too poor and also for the minimum 

concentration who shows the absence of normal distribution 

assumptions.   

 

Also, in this study, we only identified a MLR model based on a meta-

analysis spanning the African continent. Since, the data collected 

through the meta-analysis are very heterogeneous, the quality of the 

data set remains rather poor. Therefore, future studies should critically 

address the validity of the identified model and explore how the model 

can be improved and be used in a predictive model.  It is however 

suggested that such model improvement and validation step should 

be based on a more homogeneous data set. We, therefore, suggest to 

perform this future model validation and model improvement step 

using data collected at the regional scale using more homogeneous 

data collection protocols. 

 

5.6 Conclusion 

Contamination of groundwater by nitrate is an indicator of 

groundwater quality degradation and remains a point of concern for 

groundwater development programmes all over the world. It is also a 

good proxy of overall groundwater vulnerability for water quality 

degradation. We address in this chapter the issue of nitrate 

contamination of groundwater at the African scale. We inferred the 

spatial distribution of nitrate contamination of groundwater from a 
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meta-analysis of published field studies of groundwater 

contamination. We analysed the literature for reported mean, 

minimum and maximum concentration of nitrate contamination. We 

subsequently analysed, using box-plots, the reported contamination in 

terms of spatially distributed environmental attributes related to 

pollution pressure and attenuation capacity. We extracted the 

explanatory variables from a geographic information system with the 

ArcGIS 10.3TM tool.  

We finally developed a MLR statistical model allowing to explain 

quantitatively the log transformed observed contamination that is a 

proxy of vulnerability, in terms of spatially distributed attributes. We 

selected the explanatory variables using a stepwise regression method.  

 

Groundwater contamination by nitrates is reported throughout the 

African continent, except for a large part of the Sahara desert. The 

observed nitrate concentrations range from 0 mg/L to 4625 mg/L.  The 

mean nitrate concentration varies between 1.26 to 648 mg/L. The 

sample mean of this mean nitrate concentration is 54.85 mg/L, its 

standard deviation was 89.91 mg/L and its median was 27.58 mg/L.  

The minimum nitrate concentration varies between 0 to 185 mg/L 

while the maximum concentration varies 0.08 to 4625 mg/L. The 

sample mean of the minimum and maximum concentrations  is 8.91 

mg/l and 190.05 mg/L;  the sample standard deviations is  23.17 mg/L 

and 428.69 mg/L;  and the sample median is  0.55 mg/L and 73.64 mg/L, 

respectively. The distribution of the reported nitrate contamination 

data is strongly skewed. We, therefore, build statistical models for the 

log transformed mean and maximum concentrations.  

The graphical box plot analysis shows that nitrate contamination is 

important in shallow groundwater systems and strongly influenced by 

population density and recharge rate. Nitrate contamination is, 

therefore, a particular point of concern for groundwater systems in 

urban sectors.  
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The MLR model for the log transformed mean nitrate concentration 

uses ‘the depth to groundwater’, ‘groundwater recharge rate’, ‘aquifer 

type’ and ‘population density’ as an explanatory variable. The total 

variability explained by the model is 65 %. This suggests that other 

variables may be needed to explain the reported nitrate concentrations. 

These findings highlight the challenges in developing appropriate 

regional databases to predict groundwater degradation. The MLR 

shows that the population density parameter is the most statistically 

significant variable. This authenticates that leaking cesspits and sewer 

systems are considerably causing nitrate contamination of 

groundwater predominantly in urban areas. We identified similar 

MLR models for the log transformed maximum nitrate concentrations. 

Yet, for this latter attribute, the explained variation using the simple 

MLR techniques (i.e. 42 %) remains small.   

One of the main strengths of our study is that it is based on a large 

database of groundwater contamination reports from different 

countries, spanning the African continent and linked to environmental 

attributes that are available in a spatially distributed high-resolution 

format. In addition, the development of a continental-scale model of 

nitrate contamination in groundwater of Africa allowed determining 

which explanatory variables mainly influence the presence of nitrate. 

This represents an important step in managing and protecting both 

water resources and human health at the African scale. The main 

weakness of the modelling approach lies in the lack of detailed 

information available at the African scale, particularly the lack and 

uneven distribution of measured nitrate points. In spite of weaknesses 

and uncertainties caused by a moderate heteroscedasticity from 

residuals in the model, the modelling approach presented here has 

great potential. Although the meta-analysis should not replace 

systematic nitrate monitoring, it gives a first indication of possible 

contamination. It can be also applied to the preliminary assessment of 

nitrate using spatial variables. This may support the water resources 

development program for transboundary aquifers managers and 
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regional basin organizations. This is particularly important as the 

demand for drinking water is increasing rapidly at the African scale.   

We suggest that further development include the use of non-linear 

modelling techniques such as Random Forest techniques. Such 

techniques have the potential to improve the quality of explanation 

and eventually prediction by incorporating spatial autocorrelation.  

We also suggest that the models should be further validated using 

more homogeneous data sets. In a predictive mode, statistical models 

like those developed in the present chapter can be used for exposure 

estimate in epidemiological studies on the effect of polluted 

groundwater on human health. Similar models can also be developed 

for others contaminants could be explored. 
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Chapter 6 Modelling groundwater nitrate 

concentrations at the African scale using 

Random Forest Regression Techniques3  

                                                      
3 Based on: Ouedraogo, I., Defourny, P., and Vanclooster, M. (2017). Modelling 

groundwater nitrate concentrations at the African scale using Random Forest 

Regression Techniques. Accepted April 24th to review for the special issue on 

Groundwater in Sub-Saharan Africa for Hydrogeological Journal (HJ) (in progress, 

book expected in December 2017). 
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6.1 Abstract 

We use in this study the Random Forest Regression (RFR) method for 

modelling groundwater nitrate contamination at the pan-African scale. 

When compared to more conventional techniques, key advantages of 

RFR include its non-parametric nature, its high predictive accuracy, 

and its capability to determine variable importance. This last 

characteristic can be used to better understand the individual role and 

the combined effect of explanatory variables in a predictive model. 

In the absence of a systematic monitoring program for groundwater at 

the pan-African scale, we used the pan-African groundwater nitrate 

contamination database obtained from a meta-analysis (Ouedraogo 

and Vanclooster, 2016a) to test the modelling approach.  In this dataset, 

250 groundwater nitrate pollution studies from the African continent 

were compiled. The literature data were filtered using the following 

criteria: (i) the publication should explicitly report on nitrate 

concentrations in groundwater; (ii) the publication should be 

published after 1999. As predictors, we collected a comprehensive GIS 

database of thirteen spatial attributes related to land use, soil type, 

hydrogeology, topography, climatology, regions types and nitrogen 

fertilizer application rate.  

The performance of the RFR is evaluated in comparison to the Multiple 

Linear Regression (MLR) methods. Both techniques identified the 

population density as the most important variable explaining reported 

nitrate contamination. However, RFR has a much higher predictive 

power than a traditional linear regression model. RFR is therefore 

considered a very promising technique for large-scale modelling of 

groundwater pollution by nitrates.   
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6.2 Introduction 

Across the World, groundwater is one of the most valuable natural 

resources serving as a major source of water for communities, 

agriculture and industrial purposes. In Africa, groundwater is a crucial 

natural resource supporting the development, but it is subject to many 

pressures. According to Xu and Usher, (2006), degradation of 

groundwater is the most serious water resources problem in Africa. 

The two main threats are overexploitation and contamination 

(MacDonald et al., 2013). Nitrate is a common chemical contaminant of 

groundwater and the level of contamination also increases in many 

African aquifers (Spalding and Exner, 1993; Puckett et al., 2011). 

Nitrate ingestion has been linked to methemoglobinemia, adverse 

reproductive outcomes, and specific cancers (Ward et al., 2005). In 

addition, nitrate is often a proxy of other possible pollutants of 

groundwater. Nitrate contamination is therefore very informative for 

overall groundwater quality. However, it is a space-time variable and 

the level of contamination depend on many other space-times 

environmental and anthropogenic attributes. The regional modelling 

of nitrate contamination of groundwater remains, therefore, a technical 

and scientific challenge. 

 

Statistical models are often deployed to explain the spatial distribution 

of observed nitrate concentration in terms of available environmental 

and anthropogenic attributes, or to discriminate sources of 

contamination (Nolan and Hitt, 2006). Most statistical models used in 

such a context uses Multiple Linear Regression (MLR), nonlinear 

regression, logistic regression, Bayesian approaches, Artificial Neural 

Networks (ANN), or classification and regression trees in order to 

extract the variables that explain nitrate contamination (Rwalings et 

al., 1998; Burow et al., 2010; Mair and El-kadi, 2013; Gurdak and Qi, 

2012; Mattern et al., 2012). For example, Bauder et al., (1993) 

investigated the major controlling factors for nitrate contamination of 
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groundwater in agricultural areas using land use, climate, soil 

characteristics, and cultivation types as explanatory variables. 

However, these different techniques show a variety of problems such 

as the lack of sensitivity towards outlier values of logistic regression, 

and the opacity of neural networks (Abrahart et al., 2008).  

 

The use of modern data mining or machine learning approaches 

avoids many of these limitations. The emerging type of techniques 

which utilizes ensembles of regressions is receiving highlighted 

interest in other fields of knowledge (Hansen and Salamon, 1990; 

Steele, 2000; Khalil et al., 2005; Sesnie et al., 2008). Ensemble learning 

algorithms use the same base algorithm to produce repeated multiple 

predictions, which are averaged in order to produce a unique model 

(Breiman, 2001a; Friedl et al., 1999). They may reduce bias and improve 

prediction efficiency (Breiman, 2001a; Cutler et al., 2007; Peters et al., 

2007; Fernández-Delgado et al., 2014).  

 

Random Forests Regression (RFR) is an example of such an ensemble 

regression method. RFR is non-parametric and thus data do not need 

to come from a specific distribution (e.g. Gaussian) and can contain 

collinear variables (Cutler et al., 2007). Furthermore, RFR work well 

with very large numbers of predictors (Cutler et al., 2007). These 

methods can deal with model selection uncertainty as predictions are 

based upon a consensus of many models and not just on a single model 

selected with some measure of goodness of fit. RFR is appropriate for 

illustrating the nonlinear effect of variables; it can handle complex 

interactions among variables and is not affected by multicollinearity 

(Breiman, 2001b). Major applications of RFR are found in 

environmental and ecological modeling (e.g. Yost et al., 2008; Moreno 

et al., 2011; Oliveira et al., 2012; Oppel et al., 2011; Hoyos et al.,2015), 

in eco-hydrological distribution modeling (e.g. Peters et al., 2007), in 

landslide susceptibility mapping (Park, 2014; Youssef et al., 2015) and 

in remote sensing (e.g. Gislason et al., 2006; Pal, 2005; Rodriguez-
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Galiano et al., 2012a, 2012b). In groundwater research, RFs have been 

applied to model nitrate and arsenic in aquifers of the southwestern 

U.S. (Anning et al., 2012), nitrate in an unconsolidated aquifer in 

southern Spain (Rodriguez-Galiano et al., 2014), nitrate in private wells 

in Iowa (Wheeler et al., 2015) and nitrate in shallow and deep wells of 

the Central Valley (Nolan et al., 2014). A perceived disadvantage of 

another machine learning methods such as ANN is their ‘‘black box” 

nature; without estimated coefficients, it is difficult to show significant 

relations between the response and predictor variables (Nolan et al., 

2015).  According to Rodriguez-Galiano et al. (2014), RFR is relatively 

robust to outliers and it can overcome the “black-box” limitations of 

ANNs by assessing the relative importance of the explanatory 

variables, by selecting the most important ones (features) and, hence,  

reduce the dimensionality.  

 

RFR is based on bootstrap aggregated of regression trees, which 

typically outperforms compared to the traditional models such as 

logistic regression (Breiman, 2001a; Breiman et al., 1984). Moreover, the 

parameterization of RFR is very simple and it is computationally less 

demanding (Rodriguez-Galiano and Chica-Rivas, 2012). RFR provides 

very good results compared to other machine learning techniques such 

as support vector machines (SVM) and ANNs or to other decision tree 

algorithms (Breiman, 2001a; Liaw and Wiener, 2002). Furthermore, 

Loosvelt et al. (2012) demonstrated that uncertainty estimates can be 

easily assessed when RFR is applied.   

 

In this study, we use RFR to explain and predict groundwater nitrate 

contamination at the continental scale and compare the performance 

of RFR with MLR techniques. Use is made of the nitrate contamination 

data set as compiled through a meta-analysis (Ouedraogo and 

Vanclooster, 2016a). The modelling of nitrate contamination at this 

scale can provide guidance for the planning and implementation of 

groundwater monitoring programs; in particular, the design of 
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transboundary groundwater management strategies adjusted to the 

conditions of different regions of Africa.  

6.3 Materials and methods  

 6.3.1 The pan-African groundwater nitrate contamination 

dataset  

In the major part of Africa, there is very little, or no systematic 

monitoring of groundwater. In the absence of data, we used compiled 

nitrate pollution data at the pan-African scale from a meta-analysis 

(Ouedraogo and Vanclooster, 2016a). We collected 250 groundwater 

pollution studies in literature from available books and the internet 

web of sciences (ScopusTM, Sciences DirectTM, GoogleTM, and Google 

ScholarTM). We filtered the literature data using the following criteria: 

(i) the publication should explicitly report on nitrate concentrations in 

groundwater; (ii) the publication should be published after 1999. We 

derived various aggregated measures of nitrate concentration from the 

different studies.  So, we were able to retain 206 points where the 

maximum concentration of nitrate was reported, 187 points where the 

minimum concentration was reported and 94 studies on the mean 

concentration of nitrate. Out of the 94 datasets for which mean values 

were reported, 12 field sites have nitrate concentration smaller than 1 

mg/L. Therefore, we have kept only 82 values for the mean nitrate 

concentration in this study. Figure 6-1 gives an example of the 

distribution of mean nitrate concentrations collected and overlaid on a 

groundwater pollution risk map (Ouedraogo et al., 2016). This figure 

shows that nitrate concentration in groundwater is irregularly 

distributed in Africa. However, this distribution shows a coherent 

distribution according to groundwater vulnerability map i.e. where 

the groundwater is subjected to a pollution risk (Ouedraogo et al., 

2016). We study only in this chapter the reported mean nitrate 

concentrations. This choice is guided by the fact that this category of 

data is less sensitive to outliers and more robust as compared to a 
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minimum or maximum concentration data. Groundwater nitrate 

concentration data are summarized in Table 6-1. In the present study, 

the modelled response variable is the natural log of sampled 

groundwater nitrate concentration. The average mean nitrate 

concentration is 54.85 mg/L, the standard deviation is 89.91 mg/L, and 

the median concentration is 27.58 mg /L. The log transform reduces the 

influence of very high nitrate values (up to 648 mg/l) on models 

predictions. The nitrate studies were separated into two groups: 80 % 

of the dataset for building the model (training dataset) and 20 % of the 

data set for the validation of the model (tested dataset). 
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Figure 6-1: Spatial distribution of mean nitrate concentration in groundwater (Ouedraogo et al. 2016) 
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Table 6-1: Summary statistics of original and ln-transformed nitrate data (from 

Ouedraogo and Vanclooster, 2016a) 

Variable 
Mean NO3- 

concentration 

Mean ln(NO3-) 

concentration 

Minimum (mg/l or ln (mg/l)) 1.26 0.231 

Maximum (mg/l or ln(mg/l)) 648 6.473 

Mean (mg/l or ln(mg/l)) 54.85 3.169 

CV(-) 8085.08 1.935 

Standard Deviation 

(mg/l or ln(mg/l)) 
89.91 1.391 

Median (mg/l or ln(mg/l)) 27.58 3.317 

Variance (mg/l)2 or ln(mg/l)2) 163.92 43.901 

Kurtosis (mg/l or ln(mg/l)) 23.99 -0.167 

Skewness (mg/l or ln(mg/l)) 4.31 -0.294 

Number of observations (-) 82 82 

 

6.3.2 The dataset of explaining factors  

We collected data from a total of 13 possible explaining factors, 

extracted from several high-resolution databases covering physical 

and anthropogenic attributes. These attributes are related to land use, 

soil type, hydrogeology, topography, climatology, etc. Table 6-2 

presents the 13 explanatory factors, their spatial resolution, and their 

data sources. We integrated all explanatory factors into a Geographical 

Information System (GIS) and processed in ArcGIS10.3TM in a raster 

format of 15 km x 15 km spatial resolution. This resolution is the best 

compromise considering the resolution of the different available 

datasets and the large extent of the study area. 

6.3.2.1 Climate 

Climate conditions have an effect on the probability of nitrate 

occurrence pollution in groundwater. The climate class data used is the 

“Derived Climate classes for the African continent” raster format with 

the resolution of 0.5 degrees and classified into five classes (Trambauer 

et al., 2014).  We obtained the regions type data in raster format and 
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classified into six classes according to the UNEP classification (1997) 

directly from P.Trambauer from UNESCO-IHE (Delft/ The 

Netherlands).  We generated the rainfall map from the UNEP/FAO 

World and Africa GIS Data Base.  

6.3.2.2 Topography 

Land surface slope indicates whether the runoff will remain on the 

surface to allow contamination percolation to the saturated zone. We 

inferred the slope from the 90-meter Shuttle Radar Topography 

Mission (SRTM90) topographic map, using the Spatial Analyst 

software of ArcGIS10.3TM. Elevation values at 90 m resolution were 

aggregated at 15 km. 

6.3.2.3 Soil type and land use 

Soil texture influences the nitrogen loss. Nitrate leaching is generally 

greater from poorly structured sandy soils than from clay soils because 

of the slower water movement and the greater potential for 

denitrification to occur in the clay soils (Cameron et al., 2013). We 

derived the soil texture in this study from soil grids at a 1 km resolution 

produced by Hengl et al., (2014). There are 9 classes of soil texture: 

sandy, sandy loam, loamy sandy, loam, clay loam, sandy clay, sandy 

clay loam, silty clay loam, and clay.  

We produced land cover and land use from the high-resolution CCI 

LC dataset (Defourny et al., 2014). To create a consistent measurement 

of land cover, we aggregated the original 22 classes that represent the 

African’s area into 6 dominant classes (water bodies, bare area, 

grassland/shrubland, forest, urban, croplands). 

6.3.2.4 Geology and hydrogeology 

The groundwater table and vadose zone thickness determine the N 

transfer time and dilution potential from the surface to the 

groundwater. The aquifer medium is a hydrogeological factor that 
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describes the ability of pollutants to move within this aquifer 

according to its type. In this study, we inferred the depth to 

groundwater map from data presented by Bonsor et al., (2011). We 

derived the aquifer and vadose zone type from the high resolution 

global lithological database (GliM) of Hartmann and Moosdorf (2012). 

We determined aquifer type and unsaturated lithological zone for each 

of the five hydrolithological and lithological categories as defined by 

Gleeson et al., (2014). These categories are unconsolidated sediments, 

siliciclastic sediments, carbonate rocks, crystalline rocks, and volcanic 

rocks.  

 

Recharge to the groundwater as a portion from rainfall amounts 

depends on rainfall data, soil permeability, and topographic setting. 

Groundwater recharge is a function of many parameters including, but 

not limited to soil type, antecedent soil water content, land cover, and 

rainfall (Anuraga et al.,2006; Sophocleous, 2004). In our study, we 

inferred the recharge from the global-scale modelling of groundwater 

recharge presented by Döll and Fiedler (2008).  

 

Hydraulic conductivity and transmissivity are important for the 

assessment of the aquifer's ability to transmit water, determine the rate 

of flow of a contaminant material within the groundwater. We 

determined the hydraulic conductivity of aquifers using the Global 

Hydrogeology MaPS (GHYMPS) of permeability and porosity data 

(Gleeson et al., 2014). 

6.3.2.5 Nitrogen fertilizer application 

We generated the mean nitrogen fertilizer application map (kilogram 

per square kilometer) from the Potter and al., (2010) dataset. The values 

shown on this map represent an average application rate for all crops 

over 0.5° resolution grid cell. Following this study, the highest rate of 

N fertilizer application (i.e. 220 kg/ha) is found in Egypt’s Nile Delta.  
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6.3.2.6 Population density 

The population density represents the distribution of potentially 

causative agents, considering that nitrates in Africa scale are mainly 

human-caused.  Data on population density at the African scale was 

obtained from the UNEP website. The population density for the year 

2000, considered in this study, was produced by Nelson (2004).  
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Table 6-2: Explanatory variables and nitrate concentrations used in the Random Forest model 

Explanatory 

variables 

Name 
Type of 

data 

Units or 

Categories 

Spatial 

resolution/Scale 
Date Data source(s) 

Land Cover/Land Use Categorical  -  300 m 2014 Personal contact: UCL/ELIe-Geomatics (Belgium) 

Population density 
Continuous 

point  
people/km2 2.5 km 2004 ESRI : www.arcgis.com/home 

Nitrogen application 
Continuous 

point  
kg/ha  0.5° x 0.5° 2009 SEDAC : www.sedac.ciesin.columbia.edu 

Climate class data Categorical  -  0.5° 1997 
Personal contact: P. Trambauer (UNESCO-IHE, 

Delft, The Netherlands) 

Type of regions Categorical  -  0.5° 2014 
Personal contact: P. Trambauer (UNESCO-IHE, 

Delft, The Netherlands) 

Rainfall class Categorical  mm/year 3.7 km 1986 UNEP : http://www.grid.unep.ch 

Depth to groundwater Categorical  m  0.05° x 0.05° 2012 British Geological Survey:  www.bgs.ac.uk/ 

Aquifer type Categorical  -  1:3750 000 2012 
Personal contact: N.  Moosdorf (Hamburg 

University) 

Soil type Categorical   - 1 km × 1 km 2014 
ISRIC, World Soil Information: 

www.isric.org/content/soilgrids 

Unsaturated zone(impact 

of vadose zone) 
Categorical   - 1:3750 000 2012 

Personal contact: N. Moosdorf (Hamburg 

University) 

Topography/Slope 
Continuous 

point 

Percentage 

(%) 
90 m 2000 

Personal contact: UCL/ELIe-Geomatics (Belgium) 

and CGIAR/CSI (SRTM data) 

Recharge 
Continuous 

point 
mm/year 5 km 2008 

Personal contact: P.Döll and F. Portman 

(University of Frankfurt)  

Hydraulic conductivity 
Continuous 

point  
m/day 

Average size of 

polygon ~100km2 
2014 Personal contact: T.P. Gleeson (McGill University) 

Response 

variable 
Nitrates 

Continuous 

point  
mg/l - 

2000 to 

2015 
Ouedraogo and Vanclooster,(2016a)  

http://www.arcgis.com/home
http://www.sedac.ciesin.columbia.edu/
http://www.grid.unep.ch/
http://www.isric.org/content/soilgrids
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6.3.3 Description of the models 

The preliminary analysis of the mean nitrate data revealed a non-

normal distribution. Different transformations were tested in order to 

obtain a normal distribution of the dependent variable, as required in 

Multiple Linear Regression (MLR) model. The original dataset was 

randomly divided into calibration (80 %) and validation (the 

remaining 20 %) samples. We identified and validated a MLR and a 

RFR model. All the models were implemented using the R Statistical 

Software (version 3.1.1; R Development Core Team, 2015). We 

evaluated the goodness of fit using the FITEVAL model (Ritter and 

Munoz-Carpena, 2015). 

 

6.3.3.1 Multiple Linear Regression (MLR) 

Regression techniques such as linear regression (Boy-Roura et al., 2013) 

or logistic regression (Nolan and Hitt, 2006), have been widely applied 

in nitrate modelling. Usually, these models aim to use the fewest 

predictors to explain the greatest variability in the response variable 

(Graham, 2003). Stepwise approaches are used to select the most 

relevant predictors in regression models, using different selection 

criteria such as Akaike’s Information Criterion (AIC), Schwarz’s 

Bayesian information criterion of F statistics, and others (Murtaugh, 

2009). In our case, we performed a MLR and used the AIC criterion to 

select the predictors. The rational of this selection method is to combine 

the measure of fit with a penalty term based on the number of 

parameters used in the model. If more parameters (i.e., the number of 

trends or explanatory variables) are used, the model fit can be better, 

but the penalty for the extra parameters is higher as well. The smallest 

AIC indicates the most appropriate model.  
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6.3.3.2 Random Forest Regression (RFR) 

We identified also a Random Forest Regression (RFR) model on the 

same data set.  RFR modelling is an ensemble machine learning 

method for classification and regression that operates by constructing 

a multitude of decision trees (Breiman, 2001a). The philosophy behind 

ensemble learning techniques is based on the premise that its accuracy 

is higher than other machine learning algorithms because the 

combination of predictions performs more accurately than any single 

constituent model does.  The individual decision trees in RFR tend to 

learn highly irregular patterns, i.e. they overfit their training datasets. 

RFR is a way of averaging multiple decision trees, trained on different 

parts of the same training dataset, with the goal of reducing the 

prediction variance (Hastie et al., 2008). RFR modelling is appropriate 

for modelling the nonlinear effect of variables. It can handle complex 

interactions among variables, and is not affected by multicollinearity 

(Breiman, 2001b). RFR can assess the effects of all explanatory variables 

simultaneously and automatically rank the importance of these 

variables in descending order (Rodriguez-Galiano et al., 2014). 

 

A detailed description of the mathematical formulation of the RFR 

model is found in Breiman (2001a); Liaw and Wiener, (2002). The 

algorithm for RFR consists of building a forest of uncorrelated trees.  

Each individual tree is grown using a randomized subset of predictor 

variables. The trees are grown to the largest extent possible without 

pruning, and they are aggregated by averaging them. Out-of-bag 

(OOB) samples are used to calculate variable importance and to get an 

unbiased estimate of the test set error which is one of the advantages 

of RFR because there is no need for cross-validation. The method 

behaves essentially as a ‘‘black box’’ since the individual trees cannot 

be examined separately (Prasad et al., 2006) and it does not calculate 

regression coefficients nor confidence intervals (Cutler et al., 2007). 

Nevertheless, it allows the computation of variable importance 
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measures that can be compared to other regression techniques 

(Grömping, 2009).  In this study, the “randomForest” package of R 

3.1.1 of open source statistical software(R Development Core Team, 

2015) was used for all modeling. 

  

In this study, we used 13 explanatory variables (Table 6-2). In order to 

maintain a similar procedure between MLR and RFR, we applied RFR 

on the training and the validation dataset. Even though independent 

validation samples are not required in RFR, they provide the 

opportunity to assess the generalization capability of this method 

(Cutler et al., 2007). To run the RFR model, it was necessary to define 

a priori two parameters: the number of variables or factors to be used 

in each tree-building process (mtry) and the number of trees to be built 

in the forest to run (ntree). Concerning the number of trees, Breiman 

(1996) demonstrated that by increasing the number of trees, the 

generalization error always converges; hence, overtraining is not a 

problem and the number of trees can be fixed once the error has 

converged. Rodriguez-Galiano et al., (2014) demonstrated that the 

error was minimum and stable when considering 1000 trees. Random 

forest never suffers the problem of overfitting Geng (2006). Breiman 

states that the test set error rates are monotonically decreasing and 

converge to a limit as the number of trees increases approaching ∞ (The 

Law of Large Numbers insures convergence as ∞). Geng (2006) argues 

that because each tree is constructed using 63 % of the dataset selected 

at random with replacement and each node is split using the best split 

in a small random sample of available variables (usually a square root 

of the number of available variables are selected at random as a 

potential splitter), every tree is constructed at random and is 

independent of other trees. Therefore, adding trees to the forest does 

not cause a problem of overfitting (cited in RandomForests™ version 

1.0 Manual, Salford Institute). 

We determined the parameter mtry via the internal Random Forest 

function TuneRF, that recognizes the optimal number of factors (the 

default value of mtry is a total number of variables/3 for regression) 
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and it looks below and above this threshold for the value of the 

minimum OBB error rate. Breiman, (2001a) and Liaw and Wiener, 

(2002) stated that even a variable or factor (mtry = 1) can generate good 

accuracy, while Grömping (2009) proves the need to include at least 

two variables/factors (i.e. mtry = 2, 3, 4,…, m) in order to avoid using 

the weaker regressors as splitters. 

 

 

6.3.3.3 Variable importance in random forest 

The RFR used to predict nitrate concentration in groundwater, allows 

to estimate the variable importance of environmental attributes in the 

explaining model. The advantage of the RFR algorithm is that it allows 

explicitly to measure variable importance with two metrics: mean 

decrease in GINI Index and the other being the mean decrease in 

accuracy (%IncMSE). The mean decrease in GINI Index is used to 

measure the quality of a split for each variable in a tree; while the mean 

decrease in accuracy, based in Mean Squared Error (MSE) measured 

the mean decrease in prediction accuracy. In others words, the former 

measures the node impurity of the explaining factors, while the latter 

measures the contribution of the factor towards the overall fit. Each of 

these metrics measures the impact of the explanatory factor on the 

overall prediction (Breiman, 2001a). Yet, the GINI Index has been 

shown to have a bias (Strobl et al., 2007). Also, Genuer et al., (2010) 

considered that the percentage in explained mean square error is a 

more reliable measure than the decrease in node impurity. We 

therefore majorly use percentage in explained mean square error to 

assess variable importance.   

 

6.3.4 Model validation 

We evaluated the quality of the statistical models by means of the 

FITEVAL code (Ritter and Munoz-Carpena, 2013). This code uses the 

most general formulation of the coefficient of efficiency. For a complete 
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model goodness-of-fit evaluation, the graphical results of FITEVAL 

contain the following elements (Ritter and Munoz-Carpena, 2013): (1) 

a plot of observed vs. estimated values illustrating the match of the 1:1 

line; (2) the evaluation of NSE (Nash-Sutcliffe coefficient of efficiency) 

and the root mean square error (RMSE) and their correspondence 95 % 

interval; (3) the qualitative goodness-of-fit interpretation based on 

established classes (unsatisfactory, acceptable, good, very good); (4) a 

verification of the presence  of bias or the possibility presence of 

outliers; (5) the plot of the NSE cumulative probability function 

superimposed on the NSE class region; and (6) a plot illustrating the 

evolution of observed and estimated values. 

 

6.4 Results  

6.4.1 Modelling results 

6.4.1.1 Multiple Linear Regression (MLR) 

The final MLR model built includes four variables which are: (i) depth 

to groundwater, (ii) recharge, (iii) aquifer type, and (iv) population 

density.  Table 6-3 summarizes the results of this MLR model. The 

percentage of variance explained by the model was 64 % and the 

residual standard error is 0.95 (ln (mg/l)). The sign of the parameter 

coefficient indicates the direction of the relationship between 

independent and dependent variables (Boy-Roura et al., 2013). The 

lower the p-value, the more significant the model parameter. We retain 

only explanatory variables with p values ≤ 0.1.  

The MLR results show that the population density has a strong 

positive relationship with ln-transformed mean nitrate concentration. 

As the p-value < 0.0001, this variable strongly affects the nitrate 

occurrence in groundwater at the pan-African scale.  
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The second variable included in the model is the depth to 

groundwater.  The three classes (0-7; 25-50; 50-100 m b.g.l) of this 

variable are all statistically significant.  We observe among these three 

classes that the 0-7 m class has the strongest statistical significance and 

a positive coefficient, indicating a large contamination for shallows 

groundwater. Regarding the largest groundwater depth class (100-250 

m b.g.l), this class is not statistically significant (p-value >0.05). 

Therefore, we can affirm that the shallow groundwaters are most 

vulnerable to nitrate pollution in Africa compared to deep aquifers. 

The third variable retained in the model is recharge.  The two class of 

recharge rates (45-123; 123-224, in mm/year) are statistically significant 

and correspond in general to semi-arid and dry sub-humid climate. 

The high nitrate in these climate conditions can be explained by the 

intensive agriculture developed in these regions that strongly rely on 

irrigation. 

The last variable included in the final model is aquifer media.  We 

observe that two categories of aquifer media are significantly in the 

model. These are: crystalline rocks and unconsolidated sediment 

rocks. Indeed, the analysis of their negative regression coefficients 

estimates shows that the likelihood of nitrate contamination decreases 

with the presence of unconsolidated sediments and crystalline rocks. 

The other categories of aquifer type namely siliciclastic sedimentary 

rocks and volcanic rocks are found statistically insignificant in the 

model. However, the variable of aquifer type is an important 

parameter to assess groundwater vulnerability and provides 

information about the hydrogeological setting. 

A plot of predicted versus the observed log nitrate (ln NO3) 

concentration in Figure 6-2a for the training data, indicates the MLR 

model shows an acceptable fits the observed data. 
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Table 6-3: Optimal MLR model for explaining the ln-transformed mean nitrate concentration. 

 

 

 

 

 

 

Variables Estimate Std. Error t value Pr (>|t|) 

(Intercept)                                                                    3.427e+00 7.306e-01 4.690 2.08e-05 *** 

Depth [0-7]                                                                    1.384e+00 5.003e-01 2.766 0.00789 ** 

Depth [7-25]                                                                    7.322e-01 4.603e-01 1.591 0.11788 

Depth [25-50]                                                          1.408e+00 5.645e-01 2.493 0.01594 ** 

Depth [50-100]                                                          1.000e+00 5.185e-01 1.929 0.05928* 

Depth [100-250]                                                     1.332e+00 8.694e-01 1.532 0.13175 

Recharge [0-45]                                                             -6.094e-01 6.903e-01 -0.883 0.38154 

Recharge [45-123]   -1.580e+00 6.775e-01 -2.333 0.02365 ** 

Recharge [123-224]                                                       -1.334e+00 6.638e-01 -2.010 0.04974 ** 

Recharge [224-355]                                                       -9.021e-01 6.535e-01 -1.380 0.17350 

Aquifer media [Crystalline rocks]                -1.116e+00 4.010e-01 -2.783 0.00753 ** 

Aquifer media [Siliciclastic sedimentary 

rocks]   
-1.196e-01 4.770e-01 -0.251 0.80306 

Aquifer media [Unconsolidated 

sediments rocks]     
-8.010e-01 3.954e-01 -2.026 0.04802 ** 

Aquifer media [Volcanic rocks]                   -4.044e-01 6.658e-01 -0.607 0.54631 

Population density (people/km2) 5.982e-04 8.536e-05 7.008 5.29e-09 *** 

Residual standard error: 0.95 on 51 degrees of freedom 

Multiple R-squared: 0.64 

F-statistic: 6.75  on 14 and 51 DF, p-value=1.688e-07 < 0.001 

Note: Statistical significance: ***p<0.001; **p<0.05; and *p<0.1. 
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Figure 6-2: Comparison of observed and predicted log (ln) nitrate concentration on training dataset: (a) Linear regression and (b) RF regression 

 

(a) (b) 
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6.4.1.2 Estimating independent variables importance  

The variable importance plot is a critical output of the random forest 

algorithm. Figure 6-3 shows the ranking of the relative importance of 

environmental attributes on groundwater nitrate occurrence. Higher 

values of percent increase in mean squared error (MSE) indicate higher 

importance. Population density is the most important predictor of 

nitrate concentration. This can be considered a relevant finding 

because the population has a direct effect on nitrates pollution in 

groundwater. If this variable was omitted, the quality of the model 

could be reduced drastically. Rainfall was also found to a relevant 

predictor of nitrate contamination, followed by recharge and aquifer 

type. The most important intermediate variables are nitrogen fertilizer 

application, climate classes, and hydraulic conductivity; while land 

use, depth to water, slope, soil media and region type are in the bottom 

of the ranking, thus has the smallest influence on the quality of the RF 

model.  
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Figure 6-3: Variable importance according to the percent increase in mean squared 

error (%IncMSE) 

6.4.1.3 Application of Random Forest Regression 

The mtry parameter is the number of predictors used at each split. The 

tuneRF function suggests an optimal value for mtry=4. This value is 

equivalent to the default value for mtry. We also specify ntree=1000. 

We built the final model with the 4 first variables shown in Table 6-4.  

The percentage of variance explained with this model is 97.9 % (mean 

of squared residuals = 0.0407 ln (mg/l)). In this model, the fourth most 

important variable are population density, rainfall class, recharge, and 

aquifer type. Figure 6-2b shows a plot of the predicted versus the 

observed ln-transformed nitrate concentration values for the training 

data, based on only 80 % of observations. The RFR shows a better fit. 

Figure 6-4b shows the predicted versus the observed values for the test 

data, based on 20 % observations.  
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Table 6-4: Variables includes in the final RFR model, in descending order of 

importance based on percentage of mean decrease in accuracy (% IncMSE) 

Variables % IncMSE 

Population.density.people.km2. 50.3 

Rainfall. Class 10.2 

Aquifer. Media 5.3 

Recharge 5.2 
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Figure 6-4: comparison of validation results on tested dataset: (a) Linear model and (b) RF regression

(a) (b) 
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6.4.2 Evaluation of model performance 

The results of MLR and RFR models explain respectively 64 and 97 

percent of ln-transformed mean nitrate concentration. To validate the 

predictive ability of these two models, we used FITEVAL for 

evaluating first the training, and second the performance of the 

validation. Figure 6-5 to Figure 6-8 illustrates the results of the 

FITEVAL evaluation for the 2 models. Figure 6-5 suggests that MLR 

yields unsatisfactory to acceptable (NSE=0.554 [0.129-0.743]). In this 

figure, scatters follow the 1:1 line, but calculated values deviate from 

the observations positively and negatively along the prediction range. 

Figure 6-6 suggests that RFR exhibits a very good (NSE=0.998 [0.996-

0.999]) prediction. This model shows a very good performance since 

they clearly show that computed values are very similar to the 

observations.  

As regards to the testing dataset, the results of the MLR model Figure 

6-7) varies from an unsatisfactory to acceptable prediction (NSE=0.289 

[-0.462 to 0.7]). The scattered data follow the 1:1 line, but the plot scale 

of observed vs. predicted values is substantially reduced.  On the basis 

of the qualitative goodness-of-fit, the model performance is considered 

unsatisfactory. Figure 6-8 illustrates the results of the RFR model. The 

fit shows very good prediction of groundwater nitrate pollution (NSE= 

0.981 [0.959 - 0.991]). The model performance is significant even 

though there is a probability of obtaining an NSE<0.65 (28.1%). The 

performance is considered to be good on the basis of the qualitative 

good-of-fit. 
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Figure 6-5: Goodness-of-fit evaluation for training dataset in the MLR 
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Figure 6-6: Goodness-of-fit evaluation for training dataset in the RFR  
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Figure 6-7: Goodness-of-fit evaluation for validation dataset in the MLR  
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Figure 6-8: Goodness-of-fit evaluation for validation dataset in the RFR
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6.5 Discussion 

Nitrate contamination of groundwater at the pan-African scale is 

spatially variable. The results of this study show that the 

contamination of nitrate is influenced by both physical and 

anthropogenic factors.  Previous studies suggest that nonlinear 

relationships exist between nitrate concentration pollution and the 

independent variables (Rodriguez-Galiano et al., 2014; Kihumba et al., 

2015; Wheeler et al., 2015). In these studies, the superiority of nonlinear 

techniques for predicting groundwater nitrate concentrations as 

compared to linear multiple regression models has been 

demonstrated. A non-parametric non-linear statistical model is 

therefore considered suitable for modeling observed nitrate 

concentrations at the pan-African scale. 

 

The comparison between the results shows that RFR has a much higher 

predictive ability compared to MLR. Yet, MLR shows an acceptable but 

weak relationship between the dependent variable and the predictors. 

The RFR has a better performance than MLR in both the training and 

validation dataset and explained respectively 97.9 % and 98 % of the 

variation in ln-transformed nitrate concentrations.  (See Figure 6-2b 

and Figure 6-4b). By comparison, the MLR explained only 64 % of the 

variation in ln-transformed nitrate concentration for the training 

dataset. The better performance of RFR is due to the ability to handle 

nonlinear relationships between the nitrate pollution and explaining 

factors.   

The most important variable identified in both models was the 

population density. This is most likely related to the lack of sanitation 

in major parts of African continent. According to Warah (2003), Sub-

Saharan Africa hosts the largest proportion of the urban population 

residing in slums/informal settlements (71.9 per cent). These 
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settlements often contain the majority of the city's population, for 

example, more than 70 per cent in Dar es Salaam (Kombe, 2005), 80 per 

cent in Luanda (Palamuleni, 2002), and over 50 per cent in Nairobi 

(Wegelin-Schuringa and Kodo, 1997). Such settlements are mainly 

characterized, among other things, by high population densities, 

deplorable housing, inadequate basic service infrastructure (safe water 

supply, sanitation, roads, etc.), location in flood plains and lack of legal 

status as residential dwellings (Parkinson and Tayler, 2003). As stated 

previously, urban sanitation provision and waste management 

systems across SSA are inadequate, with an estimated average of 40 

per cent coverage for improved sanitation facilities (World Bank, 2012). 

In-situ sanitation, largely in the form of pit latrines and septic tanks is 

considered the dominant cause of microbiological contamination and 

a major cause of nutrient loading to water sources in SSA (Lapworth 

et al. 2017). These authors add that: water treatment options are often 

very limited and in many cases, municipal facilities for waste and 

water treatment are overloaded or experiencing reduced functionality 

partly due to limited funding and poor governance. The strong 

influence of the population density on groundwater nitrate 

contamination is consistent with a previous UNEP study 

(UNEP/DEWA, 2014). In addition, others studies such as Zingoni et al. 

(2005) demonstrated that the highest nitrate concentrations were 

associated with the highest population and pit latrine density in an 

informal settlement in Zimbabwe. Similar patterns have been observed 

in Senegal and South Africa (Tandia et al. 1999; Vinger et al. 2012). 

Rainfall is identified in the RFR as the second most important variable, 

while this variable is not among the 04 variables in the final model of 

MLR. This may indicate that a nonlinear association between rainfall 

and nitrate concentration exists, and, as such, it was better identified 

by the RFR procedure. According to Pearson (2015), rainfall is indeed 

a major factor explaining nitrate occurrence in groundwater 

environments.  Following Kulabako et al. (2007, rainfall is the primary 

climatological control factor that aids the washing of contaminants to 
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the shallow groundwater aquifer. These authors add that the increase 

in nitrate in the shallow groundwater after rain suggests that the 

system receives high loads of organic nitrogen through leaching (from 

pit latrines, drains, solid waste dumps, animal waste dumps, and 

others). Several other studies found that increasing precipitation may 

positively affect nitrate concentration in groundwater (Davis and 

Sylvester-Bradley, 1995; Rankinen et al., 2007). Conversely, other 

studies suggest that higher average precipitation could foster the 

uptake of nitrogen by crops (Schweigert et al., 2004; Sieling and Kage, 

2006) or support the dilution of nitrates (Hofreither and Pardeller, 1996 

cited in Wikck et al., 2012) and hence decrease potential nitrate 

leaching. These opposing effects suggest that the coefficient of 

precipitation could have either a negative or a positive sign. In our 

MLR analysis, the sign is unknown, because the precipitation 

parameter is not explicitly in the final model; which shows that the 

linear model is not well adapted for the interpretation of this data set 

of nitrate at the African scale. 

Recharge and Aquifer type comes in 3rd and 4th position in RFR model, 

and they occupy the 3rd and 2nd position respectively in the MLR 

model. The influence of the groundwater recharge rate to nitrate 

contamination is consistent with studies like Saffigna and Keeney 

(1997) and Hanson (2002). Furthermore, according to UNEP/DEWA, 

(2014), recharge from multiple sources influences groundwater 

microbial and chemical water quality. Groundwater recharge rate is 

interlinked with many other environmental variables including, but 

not limiting,  soil type, aquifer type, antecedent soil water content, land 

use/land cover type and rainfall (Sophocleous, 2004; Anuraga et 

al.,2006). According to a recent study in the shallow unconfined 

aquifer of the Piemonte plain, dilution can be considered as the main 

cause for nitrate attenuation in groundwater (Debernardi et al., 2007). 

Furthermore, Andrade and Stiger, (2009); Nolan and Hitt, (2006) found 

also that dilution by surface water irrigation was an important 

attenuation process. The negative sign on the recharge factor in the 
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MLR is consistent with these studies, but also for this factor, caution 

should be taken with the interpretation of the sign in the MLR as the 

MLR does not handle the non-linearity of possible relationships. The 

influence of aquifer type to the nitrate contamination was 

demonstrated by Boy-Roura et al. (2013). Also, Stiger et al., (2008) 

showed that nitrate concentration was correlated with aquifer media 

and land use.  

Nitrogen fertilizer is the 5th important variable in the RFR model. 

Previous studies have already observed groundwater nitrate pollution 

associated with nitrogen fertilizer loading and manure application 

(Greene et al., 2005; Nolan et al., 2002). Nolan et al., (2014) showed that 

N fertilizer was the most important in their RFR model. Furthermore, 

Boy-Roura et al., (2013) found that net nitrogen load (kg/ha) provide a 

better performance for their MLR. These latter authors concluded that 

nitrate concentration in groundwater is higher with increasing net 

loading.  

Climate classes come in 6th position in RFR. This is consistent with 

other previous studies showing the importance of the climatic 

conditions in groundwater degradation (Wick et al., 2012; Ramasamy 

et al., 2013). For instance, Fram and Belitz, (2011), used the aridity 

index data to develop a logistic regression model for predicting 

probabilities of detecting perchlorate at concentrations in California 

and the Southwestern United States. They demonstrated that the 

predicted probability of perchlorate occurrence is a function of climate, 

expressed in terms of the aridity index. This latter index incorporates 

precipitation and evapotranspiration.  

As regards to the depth factor of groundwater, the absence of this 

important factor among the top 6 most important variables in the RFR 

model could be due by the use of interval depth as a proxy. This 

surprising result is in contrast with some other studies showing that 

the nitrate concentration in groundwater decreases with increasing 

sampling depth (Tesoriero and Voss, 1997; Nolan and Hitt, 2006; Nolan 
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et al., 2014; Wheeler et al., 2015; Ouedraogo and Vanclooster, 2016b). 

Groundwater age is a fundamental characteristic of groundwater that 

impacts diverse geologic processes (Gassiat et al., 2013). It is defined as 

the time that has passed since the water entered the groundwater 

system (Alley et al., 2002; Kazemi et al., 2006). The distribution of 

groundwater age depends on many factors including permeability, 

recharge rate, aquifer geometry, and topography (Gassiat et al., 2013). 

Deeper groundwater typically is older and may predate periods of 

intensive fertilizer application (1950-present), and there is enhanced 

the opportunity for denitrification because groundwater requires more 

time to travel to deeper aquifers. Additionally, according to 

Dubrovsky et al., (2010), the deeper the well, the more likely that the 

sampled groundwater is a mixture of different ages and land uses. 

Furthermore, it was indicated by Luo et al., (2003), that there is a 

significant downward movement of nitrate, and hence nitrate 

concentration at certain depth will decrease with time. Age is among 

the most important variables controlling groundwater nitrate 

concentration, but it remains a variable that is difficult to estimate 

(Nolan et al., 2015). Numerical groundwater flow models may allow 

estimating the groundwater travel time. Such models demonstrated 

that travel time increases with increasing distance up-gradient of a 

well (Masterson et al., 2002). According to Dubrovsky et al., (2010), a 

10-years travels time is reasonable for areas with well-drained soils 

and flat topography. Similar studies of large recharge times for deep 

sandy aquifers were also identified by Mattern and Vanclooster, 

(2009). As a correlary to age and travel time, denitrification is 

significantly recognized for its role in reducing nitrate in soil and 

groundwater (Stevenson and Cole, 1999; Thayalakumaran et al., 2004; 

Aljazzar, 2010).  

Other variables like the hydraulic conductivity, land cover/land use, 

slope, soil media and type of region were not included in both final 

models. This is in contrast to other studies where these factors were 

considered as being important to explain groundwater degradation 
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(Gemitzi et al., 2009; Wick et al., 2012; Liu et al., 2013;   Jung et al.,2015; 

Kihumba et al., 2015).  

Validating predictions for the entire continent of Africa is certainly not 

trivial. Figure 6-1, clearly demonstrates that the study efforts of the 

nitrate groundwater contamination problem is not equally distributed 

between the different African countries. For many countries, such as 

Liberia, Guinea, Equatorial Guinea, and Sierra Leone, but also large 

land areas such as Democratic Republic of Congo, Chad, Namibia, 

Angola and South Sudan, few studies on the nitrate pollution problem 

are available. In many countries in Africa, there are considerable 

concerns with systematic groundwater monitoring. The major 

constraint in the validation of the pan-African modelling study lies 

therefore in the unavailability of a homogeneous data set on nitrate 

contamination of groundwater. Results from this analysis should 

therefore not be over-interpreted. Whilst the available data inferred 

from a meta-analysis provide a useful preliminary assessment of the 

nitrate contamination in groundwater at the pan-African scale, there 

are clear limitations. First, the data come from different sources and 

the methods used to collected and produce the results of each study 

are not the same. Second, bias can be introduced due to the set-up of 

the different reported studies. Certain studies address groundwater 

nitrate contamination as a support for a drinking water supply project; 

others studies address groundwater nitrate contamination for an 

irrigation project, and still others address the issue within a mining 

context. The different set-ups of these studies may, therefore, introduce 

a possible bias such as approach, sampling and analytical methods 

which are not standardised. The data considered to calibrate and 

validate the models should therefore not be treated as nitrate 

measurements as collected in standardised groundwater monitoring 

programs. Further studies based on less biased data sets should be 

performed to demonstrate the robustness of the developed models.  
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It may therefore be expected that a revised robust model can be 

identified if new homogeneous data sets will become available. It may 

also be expected that such new data sets will be produced and 

improved continuously in time. As time progresses, better and more 

homogeneous data sets will become available. We, therefore, suggest 

that the statistical models that were identified in our study would be 

integrated into a time-related dynamic data assimilation framework. 

The RFR model structure that outperforms in our study, as 

demonstrated by the objective goodness-of-fit analysis, would be an 

excellent modelling structure to be integrated in such a data 

assimilation framework. With the high performance of predictive 

ability observed with RF, it is important to note that Random Forests 

could be prone to overfitting for some datasets. To this regard, 

Radenkovic. (n.d), affirms that the main disadvantage of RF is a 

tendency to overfit for some noisy datasets in classification/regression 

tasks. In contrast, Geng (2006) found by comparing Logistic Regression 

with Random Forests classification that adding trees to the forest does 

not cause a problem of overfitting. Steinberg et al. (2004) affirms that 

Random Forests are resistant to overtraining (overfitting).  

Despite all these limitations, the results in our study provide already 

valuable insights into the potential causes of nitrate occurrence in 

groundwater across the African scale that may be considered in 

groundwater management and protection programs. The analysis 

confirmed the importance of the  population density as controlling 

factor, in addition to a set of other physical  environmental attributes  

particularly those related to aquifers properties (rocks materials), and 

climatic conditions. Groundwater management and protection 

programs should therefore firstly focus on the densely populated areas 

and consider the remediation of anthropogenic pollution sources such 

as leaking water sanitation systems, poorly controlled livestock 

systems, and urban agriculture. To support this idea, UN (2015); UNEP 

(2008) argues also that priority regions for research are areas which are 

experiencing the fastest urban population growth and expansion, and 
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include regions such as the Lake Victoria Basin and parts of West 

Africa. Recently, in his study entitled:” Urban groundwater quality in 

sub-Saharan Africa: current status and implications for water security and 

public health”, Lapworth et al. (2017), proposed targeted investments in 

priority research areas, who are needed in SSA to provide evidence to 

inform the provision of climate ready urban water and sanitation 

infrastructure. This is required in order to enhance safe drinking water 

and sanitation delivery to the rapidly expanding urban and peri-urban 

populace and work towards the sustainable development goals in SSA. 

The same author adds that “moreover, with ongoing health epidemics 

in urban areas, including viral/ bacterial diseases, many of which are 

from faecal sources, both the national governments and the 

international community should consider investments in improved 

waste management and clean and safe water supplies as a matter of 

priority.” 

6.6 Conclusion 

We explored in this study the potential of Random Forests Regression 

(RFR) techniques, to model nitrate in groundwater at the continental 

scale of Africa. The pollution of groundwater by the nitrate at the pan-

African scale depends on the interaction between the physical and 

anthropogenic variables that affect groundwater vulnerability to 

nitrate contamination. Both categorical and continuous explanatory 

variables have been used by RFR allowing: (i) to establish the relation 

between explaining attributes and the mean ln transformed nitrate 

concentration; (ii) to measure and assess the importance and role of the 

explanatory variables in the groundwater pollution; (iii) to build a 

robust model based on environmental data and anthropogenic 

attributes; (iv) to provide guidelines for evaluating their role in 

influencing groundwater vulnerability to pollution. Determining 

which explanatory variables mainly influence the presence of 

contaminants in groundwater represents an important step in 

managing and protecting both water resources and human health.  In 
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this study, we also compared the performance of the RFR with a 

Multiple Linear Regression (MLR) model.  

The results of this study illustrate that the RFR outperforms in 

modelling pan-African nitrate concentration. The good performance of 

the RFR is attributed to its non-parametric nature, i.e., it does not need 

to follow a normal distribution. Moreover, its robustness against 

outlier values is bigger than that of other methods, as each tree in the 

RFR is generated from different data subsets. A perceived 

disadvantage of this machine learning method is their “black box” 

nature. The RFR does not allow estimating directly coefficients related 

to explanatory variables. But, the RFR allowed ranking the variables 

according to their relative contribution to the model using a non-

parametric approach.   

The validation of the MLR and RFR models based on an objective 

goodness-of-fit confirmed the good performance of the RFR as 

compared to MLR. The RFR is, therefore, a promising technique for 

modeling groundwater degradation because of its ability to provide 

meaningful analysis of nonlinear and complex relationships such as 

the ones found in hydrogeological studies.  

 

However, model performance could be influenced by the size of 

sample and bias of nitrate concentrations collected. Furthermore, 

groundwater nitrate pollution is not only a spatial but also a temporal 

variable process. Nitrate is not a conservative tracer since its 

concentration can be affected by the complex biogeochemical process, 

in particular, redox chemistry. This temporal dimension has not been 

included in the current study yet. The lack and bias of groundwater 

quality data have been pointed out as a major limitation for the 

systematic investigation of nitrate in groundwater at the continental 

scale. This prompts for consolidating and further developing 

groundwater monitoring programs at the continental scale. For 

example, we recommend on establishment of country monitoring 



227 

 

networks, unification of sampling methods and frequency, minimal 

extent of chemical analysis to others parameters, expand national and 

international funding sources for monitoring networks operation. 

Nevertheless, the data scarcity and bias issue, some overall conclusions 

could be drawn related to important groundwater pollution sources. 

Results have demonstrated that groundwater nitrate contamination is 

strongly linked to population density.  

 

The current study is a novel application of machine learning 

techniques for groundwater nitrate contamination modelling at the 

African scale. Further studies are needed to reduce their uncertainty 

and incorporate homogenous data to test the model and increase the 

accuracy of this model. The analysis presented here represents an 

important step toward developing tools that will allow us to accurately 

predict the distribution of nitrate contamination in groundwater in the 

climate change context. Such conclusion could prompt national or 

international authorities to foster targeted local investigations. It yields 

also important baseline information for monitoring progress in the 

implementation of the United Nations Sustainable Development Goals 

(UN SDGs) for water. 
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Chapter 7 Validating a continental-scale 

groundwater diffuse pollution model 

using regional datasets4 
 
 

 

 
 

 

  

                                                      
4 Ouedraogo, I., Defourny, P., and Vanclooster, M. (2017). Validating a 

continental scale groundwater diffuse pollution model using regional 

datasets. In Environmental Science and Pollution Research (ESPR) journal. 

Submitted, June 23rd 2017 (under review). 
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7.1 Abstract 

In this study, we assess the validity of an African scale groundwater 

pollution model for nitrate. In a previous study, we identified a 

statistical continental scale groundwater pollution model for nitrate 

(Ouedraogo et al., 2017; accepted to review). The model was identified 

using a pan-African meta-analysis of available nitrate groundwater 

pollution studies. The model was implemented in both RF (Random 

Forest) and Multiple Regression formats. For both approaches, we 

collected as predictors a comprehensive GIS database of thirteen 

spatial attributes, related to land use, soil type, hydrogeology, 

topography, climatology, region typology, nitrogen fertilizer 

application rate, and population density. In this paper, we validate the 

continental scale model of groundwater contamination by using a 

nitrate measurement dataset from three African countries. We discuss 

the issue of data availability, and quality and scale issues, as a 

challenge in validation. Notwithstanding the modelling procedure 

exhibited very good success using a continental scale dataset (e.g. 

R2=0.97 in the RF format using a cross-validation approach), the 

continental scale model could not be used without recalibration to 

predict nitrate pollution at the country scale using regional data. In 

addition, when recalibrating the model using country scale datasets, 

the order of model exploratory factors changes.  This suggests that the 

structure and the parameters of a statistical spatially distributed 

groundwater degradation model for the African continent are strongly 

scale dependent.  
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7.2 Introduction 

Throughout the world, groundwater is an important source of 

freshwater, used by industry, agriculture, and domestic users. 

However, worldwide groundwater systems are experiencing 

increasing threat from and risk of pollution from agricultural activities, 

urbanization, and industrial development (Foster et al. 2003; Aljazzar, 

2010; Charrière and Aumond, 2016; Constant et al.2016). According to 

Gurdak (2014), all groundwater resources are vulnerable to nonpoint 

source (NPS) contamination. Diffuse NPS pollution from farming 

activities and point source pollution from sewage treatment and 

industrial discharge are the principal contaminant sources (Boy-Roura, 

2013). One of the most common and persistent problems of 

groundwater pollution is associated with diffuse pollution generated 

through the intensification of agricultural activities over the last 

decades, with increased use of chemical fertilisers and higher 

concentrations of animal excrement in smaller areas (Boy-Roura, 2013). 

Agricultural land use leads to elevated concentrations of nutrients. 

According to Haller et al. (2013), on a global scale agricultural land use 

represents the largest diffuse pollution threat to groundwater quality. 

Elevated concentrations of nutrients (especially nitrogen and 

phosphorus) can cause a variety of problems, including degradation of 

ecosystems (for example, eutrophication of water bodies), and human 

health issues. Nitrate is the most ubiquitous nonpoint (NPS) 

contaminant of groundwater resources worldwide (Spalding and 

Exner, 1993). Nitrate ingestion has been linked to methemoglobinemia, 

adverse reproductive outcomes, and specific cancers (Ward et al., 

2005). 

In Africa, groundwater is a crucial natural resource supporting the 

development of the continent, but it is also subject to many pressures. 

Two main threats are overexploitation and contamination (MacDonald 

et al., 2013). The pressures exerted by the agricultural sector on 

groundwater are of primary concern (Xu and Usher, 2006; Sharaky, 
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2016). In particular, we found also in our previous studies, like as 

Kulabako et al. (2007) that African shallow groundwater systems are 

vulnerable to pollution (Ouedraogo et al., 2016; Ouedraogo and 

Vanclooster, 2016b).  

 

In the overwhelming majority of African water bodies, nitrate remains 

one of the most critical pollutants, and the level of contamination is 

increasing (Spalding and Exner, 1993; Puckett et al., 2011). Nitrate in 

groundwater is derived from various point and diffuse sources but 

mainly originates in the extensive use and release of anthropogenic 

nitrogen compounds in agricultural and urban environments (Strebel 

et al., 1989; Spalding and Exner, 1993; Foster, 2000; Böhlke, 2002; 

Wakida and Lerner, 2005). The presence of nitrates also depends on 

environmental attributes, such as soil type, climatology, 

hydrogeology, and others (Davis and Sylvester-Bradley, 1995; Nolan 

and Hitt, 2006; Kulabako et al. 2007; Boy-Roura et al. 2013; 

UNEP/DEWA, 2014; Nolan et al. 2014; Pearson, 2015; Wheeler et al. 

2015; Ouedraogo and Vanclooster, 2016a).  In this regard, reliable 

predictions of nitrate concentrations in groundwater, in terms of land 

use or agricultural practices, are essential for groundwater 

development programs. Indeed, the ability to predict groundwater 

quality is key to designing sustainable land and water management 

programs. Yet, at present, there are few regional or continental scale 

nitrate groundwater pollution studies for Africa.  

 

Statistical data modelling can help to improve our understanding of 

the key processes involved in nitrate contamination of groundwater. 

Because statistical approaches differ in their ability to model 

relationships, an evaluation of different statistical approaches can 

provide insights into which approach is most appropriate for 

modelling groundwater quality. To this end, numerous studies have 

compared a suite of statistical approaches, including linear models 

(Bauder et al.1993; Rawlings et al.1998; Boy-Roura et al. 2013; Jung et 
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al.2016), generalised linear models (Shamsudduha et al.2015), 

generalised additive models (Yee and Mitchell, 1991; Barrio et al.2013), 

artificial neural networks (Gemitzi et al.2009), classification and 

regression trees, multivariate regression trees, and other highly 

computational statistical methods, such as Random Forest (RF) 

methods (Breiman et al., 1984; De'ath and Fabricius, 2000; De'ath, 2002; 

Breiman 2001; Evans et al., 2011). Generally, classification tree-based 

approaches behave better, because they allow for incorporating 

complex nonlinear processes into the statistical model. Among these 

tree-based approaches, RFs are often well performing (e.g. Lawler et 

al., 2006; Prasad et al., 2006; Knudby et al., 2010). RF is an ensemble 

learning method which combines multiple models that are built using 

bootstrap samples (Breiman, 2001). Ensemble learning techniques 

generate many classifiers and aggregate their results (Liaw and 

Wiener, 2002). RF consists of a compilation of regression trees (e.g. 1000 

trees in a single RF) and is empirically proven to be better than its 

individual members (Hamza and Larocque, 2005).  

 

We developed in a previous study a statistical model based on a meta-

database of nitrate obtained at the African scale (Ouedraogo et al., 

2017; under review). Using a cross-validation approach, this model 

allowed predicting the spatial patterns of the continental scale 

groundwater degradation as observed in the metadata base (R2=0.97).  

In the present study, we attempt to evaluate the predictive ability of 

the continental scale RF model to the regional scale by using 

independently collected regional datasets. To this end, we used 

groundwater nitrate measurement datasets for three African countries: 

Senegal, South-Africa and Burkina Faso.  
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7.3 Data and methods 

7.3.1 Measurement of nitrate data in groundwater  

Nitrate measurements in groundwater were compiled for South-

Africa, Senegal, and Burkina Faso. A summary of the basic statistics 

and sources of nitrate collected is given in Table 7-1. The nitrates in 

groundwater were determined from several stations (wells, boreholes, 

and springs) that are very often used for drinking-water supply. 

Comparability of water quality data from different laboratories can 

only be ensured if it is identical, or at least if similar methods are used 

(Chapman, 1996). There are many comprehensive standard manuals 

and guidebooks describing laboratory methods in detail, such as the 

GEMS/WATER Operational Guide (WHO, 1992) and the practical 

guide to the methods discussed in this volume (Bartram and Ballance, 

1996). In our case, no standard guidance was followed on methods for 

the collection and interpretation of the data, although such guidance 

would clearly be beneficial and help to eliminate much of the 

subjectivity introduced in the dataset.  

Data quality control is a complex and time-consuming activity which 

must be undertaken continuously to ensure meaningful water quality 

assessments (Chapman, 1996). Every stage of data handling increases 

the risk to introduce errors. Most risks are associated with a human 

error during written transcription or ‘keying-in’ via a computer 

keyboard. Possible sources of errors in the collected samples could be: 

(i) lack of trained and experienced data collectors, i.e. the laboratory 

personnel should be sufficiently trained and qualified to carry out the 

necessary analytical operations properly; (ii) lack of good quality 

supervision, for example not enough time allocated to supervision, 

high ratio of data collectors to supervisors; or (iii) errors in data 

handling operations, such as data entry/omission in data reports, or 

when checking and validating measurement data. Therefore, in order 

to control the quality of the data, all datasets were analyzed and 
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filtered to eliminate at least some bias. For example, we eliminated all 

negative and zero values of nitrate recorded in the datasets. Nitrate 

data are principally collected at given geographical locations in the 

groundwater. Thus, the longitude and latitude of the sampling or 

measurement sites (x and y coordinates) which did not have a nitrate 

value reported were deleted. Out of a total of 37,382 samples for 

Burkina Faso, we retained 9049 samples after evaluation. As another 

example, in the Burkina Faso dataset we observed a maximum value 

concentration of 55 550 mg/L and decided to delete this value.  In this 

case, we assumed there exists an error for this reported value or 

measurement, because of the large difference between this value and 

the second maximum value in the dataset (in this case 1 282 mg/L). 

Hence, concentrations of NO3- in the Burkina Faso dataset ranged from 

11 to 1 282 mg/L, with a mean concentration of 55.10 mg/L. Out of a 

total of 2 913; 2 813 samples were used in the South Africa case, where 

NO3- concentrations ranged from 50.1 to 1 599 mg/L with a mean 

concentration of 126.79 mg/L. For Senegal, out of a total of 3 721 

samples, we kept 1 332 samples after evaluation. For this country, NO3- 

concentrations ranged from 0.02 to 889.7 mg/L, with a mean 

concentration of 19.37 mg/L. We observed that the mean concentration 

of nitrate in groundwater for the Burkina Faso and South Africa 

datasets exceeds the WHO (World Health Organisation) drinking 

water standard of 50 mg/L. Furthermore, we observed that the 

maximum nitrate concentration for all these countries is very high. 

These high values of nitrate concentration demonstrate that the 

problem of nitrate pollution in African countries is very acute. The 

spatial distribution of the collected data is illustrated in Figure 7-1,  

Figure 7-2, and Figure 7-3.  We decided to represent only the points of 

sampling with the level of nitrate above of 50 mg/L. From the 

distribution of the sampling points in Burkina Faso, it is evident that 

groundwater sampling was concentrated in certain areas, e.g. “Nord”, 

Centre-Nord”, “Centre-Est”, Centre and Plateau-Central”; while in 

regions of “Boucle du Mouhoun”, Haut-Bassins”, Cascades”, Sud-
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Ouest”, the sampling is not concentrated, but showed a high level of 

nitrate. We observe in the region of “Sahel” more high level of nitrate 

compared to others regions, like “Est”. These zones cited in French 

correspond of names some administrative regions in Burkina Faso, 

because, the country is divided into thirteen regions. In South Africa, 

the spatial distribution, show that the groundwater sampling was 

more concentrated in Limpopo province. We observe less sampling of 

nitrate in Orange Free State. The high level of nitrate in observed 

almost everywhere in this country, but Limpopo province show more 

points of high values of nitrate. 

From the spatial distribution of nitrate in Senegal, we observe on 

sampling point with the high level of nitrate in Dakar; while 

Tambacounda presents more sampling points with a high level of 

nitrate concentration. In this area, the nitrate level varies enormously.  

In Centre of Senegal, we haven't sampling points of nitrate. 

 

Table 7-1: Summary statistics and sources of compiled nitrate measurements 

Country 
Number 

of samples 

Min. Mean  Max. Period of 

collection 
Sources/references 

mg/L 

Burkina 

Faso 
9049 11 55.10 1282 2009 

Zougrana Jacqueline, 
1DEIE/Burkina Faso. 

zougjac@yahoo.fr 

Senegal 1332 0.02 19.37 889.7 1952–2009 

Moussa Cissé/DGPRE2, 

Senegal, 

scissemoussa@yahoo.fr  

South 

Africa 
2923 50.1 126.79 1599 1994–2009 

https://ggis.un-

igrac.org/ggis-

viewer/viewer/groundw

aterafrica/public/default 
                             1DEIE: Direction des Etudes et de l'Information sur l'Eau; 

                    2DGPRE: Direction de la Gestion et de la Planification des Ressources en Eau. 

 

 

 

mailto:zougjac@yahoo.fr
mailto:scissemoussa@yahoo.fr
https://ggis.un-igrac.org/ggis-viewer/viewer/groundwaterafrica/public/default
https://ggis.un-igrac.org/ggis-viewer/viewer/groundwaterafrica/public/default
https://ggis.un-igrac.org/ggis-viewer/viewer/groundwaterafrica/public/default
https://ggis.un-igrac.org/ggis-viewer/viewer/groundwaterafrica/public/default
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Figure 7-1: Distribution of nitrate concentration in groundwater in South Africa 

 

Figure 7-2: Distribution of nitrate concentration in groundwater in Burkina Faso 
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Figure 7-3: Distribution of nitrate concentration in groundwater in Senegal 

 

7.3.2 Examining the distribution of nitrate data 

The Q-Q plot, or quantile-quantile plot, is a graphical tool to assess the 

theoretical distribution of a data set. For example, if we run a statistical 

analysis that assumes our dependent variable is normally distributed, 

we can use a normal Q-Q plot to check that assumption. If the data 

does indeed follow the assumed distribution, then the points on the Q-

Q plot will approximately fall on a straight line. The distribution of 

groundwater degradation parameters is often skewed. The log 

transformation of original data is therefore often used to reduce the 

skewness of original data.  We applied the log transformation and used 

a ‘qqnorm’ function in R to visualize the distribution of our data. 

Theoretical quantiles of a normal distribution versus sample quantiles 

for the three regional data sets were checked, as shown in Figure 7-4. 

It is shown that even with a logarithmic transformation the assumption 

of normality does not appear to be satisfied for the regional datasets. 
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This is in contrast to the results obtained from a meta-analysis at the 

continental scale (Ouedraogo et al., 2017; under review). The Q-Q plot 

for Burkina Faso (Figure 7-4a) shows a staircase pattern of distribution, 

which means that some values are discrete. In other words, this Q-Q 

plot is obviously very different from a linear trend line and data are 

not normally distributed. Also, the Q-Q plot for the South Africa 

dataset does not support the normal distribution hypothesis (Figure 7-

4b). A remarkable feature of the Q-Q plot for the Senegal data set 

(Figure 7-4c) is the prominent lower tail anomaly.  
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a) b) 

c) 

Figure 7-4: Q-Q plots for the three country data sets: a) Burkina Faso; b) South Africa; c) Senegal) 
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The non-normality of data poses problems with parametric methods 

such as multiple linear regression analysis.  We, therefore, use in this 

study the non-parametric RF algorithm that is not constrained by the 

non-normality of the data.  

 

7.3.3 Environmental variables 

In addition to the nitrate measurement datasets, we also collected a 

total of thirteen spatial attributes, extracted from several high-

resolution databases covering physical and anthropogenic attributes. 

These spatial attributes are related to land use, soil type, hydrogeology, 

topography, climatology, etc. Table 7-2 presents the thirteen 

explanatory variables, their spatial resolution, and their various main 

sources. All explanatory variables were integrated into a Geographical 

Information System (GIS) and processed in ArcGIS10.3TM in a raster 

format of 15 x 15 km2 spatial resolution. This resolution was found to 

be the best compromise, considering the resolution of the different 

available datasets, the large extent of the study area, and the 

performance of our computers.  
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Table 7-2: Sources of the collected pan-African scale databases related to environmental parameters. 

Explanatory 

variables 
Type of data 

Units or 

Categories 

Spatial 

resolution/Scale 
Date Data source(s) 

Land cover/land 

use 
Categorical  -  300 m 2014 1UCL/ELIe-Geomatics (Belgium) 

Population 

density 
Continuous point  people/km2 2.5 km 2004 ESRI : www.arcgis.com/home 

Nitrogen 

application 
Continuous point  kg/ha  0.5° x 0.5° 2009 

2SEDAC : 

www.sedac.ciesin.columbia.edu 

Climate class data Categorical  -  0.5° 1997 

Global-Aridity values (UNEP, 1987)/ 

(UNESCO-IHE, Delft, The 

Netherlands) 

Type of regions Categorical  -  0.5° 2014 

Global-Aridity values (UNEP, 1987)/ 

(UNESCO-IHE, Delft, The 

Netherlands) 

Rainfall class Categorical  mm/year 3.7 km 1986 UNEP: http://www.grid.unep.ch 

Depth to 

groundwater 
Categorical  m  0.05° x 0.05° 2012 

British Geological Survey: 

www.bgs.ac.uk/ 

Aquifer type Categorical -  1:3750 000 2012 3GLiM data (Hamburg University) 

Soil type Categorical   - 1 km × 1 km 2014 
ISRIC, World Soil Information: 

www.isric.org/content/soilgrids 

Unsaturated zone 

(impact of vadose 

zone) 

Categorical   - 1:3750 000 2012 GLiM data (Hamburg University) 

http://www.arcgis.com/home
http://www.sedac.ciesin.columbia.edu/
http://www.grid.unep.ch/
http://www.isric.org/content/soilgrids
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Explanatory 

variables 
Type of data 

Units or 

Categories 

Spatial 

resolution/Scale 
Date Data source(s) 

Topography/slope Continuous point  
percentage 

(%) 
90 m 2000 

UCL/ELIe-Geomatics (Belgium) and 
4CGIAR/CSI (SRTM data) 

Recharge Continuous point  mm/year 5 km 2008 

Global scale modelling of groundwater 

recharge 

 (University of Frankfurt)  

Hydraulic 

conductivity 
Continuous point  m/day 

Average size of 

polygon ~100km2 
2014 5GLHYMPS data (McGill University) 

                       1Université Catholique de Louvain/Earth and Life Institute/Environmental sciences; 
                       2Socioeconomic Data and Applications Center (SEDAC); 
                       3The new global lithological map database GLiM: a representative of rock properties at the Earth’s surface; 
                       4Consultative Group for International Agricultural Research (CGIAR)/ Consortium for Spatial Information (CSI); 
                        5A glimpse beneath the Earth’s surface: Global Hydrogeology MaPS (GLHYMPS) of permeability and porosity. 
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7.3.4 Model development and validation approach 

In this study, we used the RF algorithm for regression tasks rather than 

classification tasks. A detailed description of the RF method is given in 

Breiman, (2001a); and Culter et al. (2007). We present here a short 

summary of the RF method. The RF method (i) is non-parametric, (ii) 

does not over-fit, (iii) has high predictive power, and (iv) provides 

additional pieces of information (e.g. the importance of variables). The 

philosophy behind ensemble learning techniques, like RF, is based on 

the premise that its accuracy is higher than other machine learning 

algorithms because the combination of predictions performs more 

accurately than any single constituent model does (Rodriguez-Galiano 

et al., 2014). The individual decision trees in RF tend to learn highly 

irregular patterns, i.e. they overfit their training datasets. RF is a way 

of averaging multiple decision trees, trained on different parts of the 

same training dataset, with the goal of reducing the prediction 

variance (Hastie et al., 2008). RF modelling is appropriate for 

modelling the nonlinear effect of variables. It can handle complex 

interactions among variables, and is not affected by multicollinearity 

(Breiman, 2001b). RF can assess the effects of all explanatory variables 

simultaneously and automatically rank the importance of these 

variables in descending order (Li et al., 2015). The algorithm for RF 

consists of building a forest of uncorrelated trees. Each individual tree 

is grown using a randomised subset of predictor variables. The trees 

are grown to the largest extent possible without pruning, and they are 

aggregated by averaging them. Out-of-bag (OOB) samples are used to 

calculate variable importance and to get an unbiased estimate of the 

test set error, which is one of the advantages of RF because it means 

that there is no need for cross-validation (Oliveira et al.2012). The 

method essentially behaves as a ‘‘black box’’ since the individual trees 

cannot be examined separately (Prasad et al., 2006) and it does not 

calculate regression coefficients nor confidence intervals (Cutler et al., 

2007). Nevertheless, it allows the computation of variable importance 
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measures that can be compared to other regression techniques 

(Grömping, 2009). Within a very short period of time, RFs have become 

a major data analysis tool, and one which performs well in comparison 

with many standard methods (Heidema, et al.2006; Díaz-Uriarte et 

al.2006) (such as linear regression) and complex models (such as 

artificial neural networks and support vector machines). What has 

greatly contributed to the popularity of RF is the fact that it can be 

applied to a wide range of prediction problems, even if they are 

nonlinear and involve complex higher-order interaction effects, and 

also that RF produces variable importance measures for each predictor 

variable (Strobl et al.2007). The RF model has been successfully applied 

to various problems in the last few years, in (for example) genetic 

epidemiology, microbiology, ecology (Strobl et al.2007), and other 

fields related to the environment and water resources (Booker and 

Snelder, 2012; Zhao et al.2012).  

 

In our previous study (Ouedraogo et al., 2016a; under review), a 

continental-scale nonlinear RF statistical model was developed by 

using a meta-database. The model had an excellent prediction capacity 

when comparing predicted versus observed ln-transformed nitrate 

concentration values for the training data, based on only 80 % of 

observations (R2=0.97) (see Figure 7-5a) and predicted versus observed 

values for the test data, based on 20 % of observations (R2=0.98) (see 

Figure 7-5b). Due to this and to the good results obtained at the 

continental scale, we have also used an RF in the present study to 

model groundwater degradation at the country level. The predictive 

ability or validation consisted of a comparison of model prediction and 

observed nitrate. The original dataset was therefore randomly divided 

into calibration samples (80% of total samples) and validation samples 

(the remaining 20%). Given that the predictors include both discrete 

and continuous variables, we implemented the CARET (Classification 

And REgression Training) package to determine the importance of 

explaining factors in the predictive model. The CARET package uses a 
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method recommend by Strobl et al. (2007) that take accounts for bias 

associated with disparity in the number of levels contained in factorial 

variables. Strobl et al. (2007) suggested this alternative variable 

importance measure with a large number of categorical variables, 

which are selected against with a traditional random forest approach. 

To this end, we classified the relative importance of each variable for 

Burkina Faso in more detail. 

  

All analyses were performed in the R statistical software version 3.2, 

using freely distributed packages. 
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Figure 7-5: RF regression for observed and predicted log (ln) nitrate concentration on training dataset (a) and tested dataset (b) using the 

continental-scale nitrate data set. 

(a) (b) 
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7.4 Results 

7.4.1 Validating the continental scale model with three 

countries datasets 

We evaluated the predictive ability of the continental-scale RF 

regression model at the country level using NO3- data in Figure 7-6, 

Figure 7-7, and Figure 7-8 as the response variable. The validation 

results of this nonlinear method showed a poor performance at the 

country level compared to the calibration model (Ouedraogo et al., 

2017; under review). The scatterplots of predicted versus observed of 

nitrate showed the wide range of predictions. For example, in Burkina 

Faso, the prediction is quite modest at R2 =0.23 (Figure 7-6). 

Furthermore, in Senegal (Figure 7-7) and South Africa (Figure 7-8), we 

observed a very poor predictive ability (R2<=0.1), with a coefficient of 

determination of 0.09 and 0.003 respectively. 
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Figure 7-6: Validation results of the continental scale RFR model on the observed 

groundwater nitrate of Burkina Faso 

 

 
 

Figure 7-7: Validation results of the continental scale RFR model on the observed 

groundwater nitrate of Senegal 
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Figure 7-8: Validation results of the continental scale RFR model on the observed 

groundwater nitrate of South Africa 

 

7.4.2. Re-calibration of nonlinear RF regression at country level 

We recalibrated the RF model for each country using the country 

specific measured nitrate data. The recalibration procedure used 80 % 

of the country specific data for training dataset and 20 % for validation. 

The results of these recalibration showed variable results. For Burkina 

Faso (Figure 7-9a), we obtained very good results for the calibration 

(R2 =0.91) and validation (R2= 0.92) test. In contrast to this, the RF 

regression model failed to describe the data of the Senegal (Figure 7-

10a) and South African (Figure 7-11a) data set. For those latter data sets 

we obtained R2<=0.2 both in the calibration and in the validation step. 
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Figure 7-9: Log nitrate of observed versus predicted values for Burkina Faso

(a) (b) 
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Figure 7-10: Log nitrate of observed versus predicted values for Senegal 

(a) (b) 
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Figure 7-11: Log nitrate of observed versus predicted values for South Africa 

(a) (b) 
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7.4.3 Variable Importance Plots at country level 

In Figure 7-12, we show for Burkina Faso the ‘importance variable plots’ 

produced by the ‘caret’ package, which portrays the importance of 

twenty (20) first levels’ of the factorial variable. Given the poor 

performance of the model for the Senegal and South Africa dataset, we 

cannot show this analysis for these 2 countries. By analyzing variable 

importance in Burkina Faso, we found that nitrogen fertilizer 

application, population density and recharge had the highest scores 

among all variables. This corroborates with earlier studies on nitrate 

pollution of African groundwater bodies (e.g. Mfumu et al. 2016). 

 

 

 
Figure 7-12: Variable importance plot for Burkina Faso 
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7.5. Discussion  

Two prerequisites are necessary for large-scale modelling of nitrate 

pollution of groundwater on an operational basis (Refsgaard et al., 

1999): firstly, access to readily available large-scale data of nitrate 

pollution and associated variables, making it possible to identify and 

validate an appropriate nitrate pollution model; and secondly, an 

adequate scaling, making it possible to apply the identified and 

validated model at another scale. The first prerequisite is often 

challenging when assessing nitrate pollution of African groundwater 

bodies. Not all the existing ‘African’ nitrate databases are generally 

available for modelling due to various, often institutional, restrictions 

(e.g. not publicly accessible, or available but with poor data). Also, not 

all databases maintained by African institutions contain harmonised 

and integrated datasets. For example, many databases are not 

harmonised in their contents or nomenclatures. 

In view of these limitations, the present work tested the predictive 

ability of a nonlinear RF statistical model developed at the pan-African 

scale (Ouedraogo et al. 2016a; under review) and applied at a national 

level. We conducted this experiment using data collected from Burkina 

Faso, Senegal and South-Africa. While good results were obtained 

from the calibration and validation runs at the pan-African scale 

(Ouedraogo et al., 2016a; under review), these results could not be 

replicated at the country scale. The country-scale validation of the 

continental-scale model produced a R2 of 0.003, 0.09, and 0.23 

respectively for South Africa, Senegal and Burkina Faso. These poor 

results of the validation at the country scale show that the continental-

scale model is not valid for making predictions at smaller scale. When 

recalibrating the model at the country scale, successful results could 

only be obtained for Burkina Faso. This shows that a similar model 

structure can be used to model nitrate pollution at the scale of Burkina 

Faso and the whole African continent, but that the model parameters 

are scale-variant. For Senegal and South Africa, the model structure of 
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the continental-scale model cannot be used to predict pollution at the 

country scale. The regional model for Senegal and South Africa should 

therefore encompass other basin attributes for predicting nitrate 

concentrations (Schwarz et al. 2011; Dupas et al. 2013). For example, 

climate typically exhibits smaller variability within a region than 

across the continent (Schwarz et al., 2011). Hence, the role of climate in 

explaining nitrate contamination may become different at the regional 

scale as compared to the continental scale. The poor capacity to model 

nitrate pollution in Senegal and South Africa with a model type 

inferred from continental data may also be due to the poor quality of 

the data. Nitrate measurements collected for each country are derived 

from various climate zones, with no standard manuals or guidebooks 

describing the methods used to collect across the dataset. The data may 

therefore exhibit some bias, as we have mentioned in Section 7.3.1. 

There is no guarantee that the available nitrate point data from Senegal 

and South Africa are truly representative. For example, for the nitrate 

dataset of Senegal, the author of the dataset has declared that errors 

exist in the recorded data. For example, on the IGRAC (International 

Groundwater Resources Assessment Centre) Website, the data 

provider mentions: “No additional quality checks were performed and 

data should be used with caution. SADC-GMI and IGRAC accept no 

responsibility for accuracy of the data”. Further, the low predictive 

ability of the continental scale model may be due to calibration issues. 

Indeed, by using logistic regression to explain non-point source (NPS) 

NO3- in groundwater, Gurdak and Qi (2012) argue that poorly 

predictive models are probably over-trained on the calibration data.  

 

The rather good results when recalibrating the continental scale model 

at the country scale for Burkina Faso shows that (when the previously 

mentioned pitfalls are addressed) the structure of the continental-scale 

model can be maintained, but that the model parameters are scale-

variant. The importance of scale effects has long been recognised by 

hydrologists, water resources managers and other water practitioners 
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(Refsgaard and Butts, 1999; El-Sadek, 2002; Gubler et al., 2011). 

Refsgaard and Butts (1999), for instance, affirm that model codes are 

generally scale-specific. According to Heuvelink and Pebsema (1999) 

(cited in El-Sadek 2002), there are three principal reasons for this: i) 

different processes are important at different scales; ii) input data 

availability is reduced at larger scales; and iii) the model’s input and 

output undergo a change of ‘support’, i.e. the sample volume of field 

data changes between different spatial scales. Such general 

observations on scale dependency also hold for groundwater 

vulnerability and pollution modelling. Gurdak and Qi (2012), for 

instance, aimed to develop a statistical groundwater pollution model 

for the entire California Coastal Basin aquifer system (CCB) using 

explanatory variables that represent the source, transport, and 

attenuation (STA) of nitrate contamination in groundwater. They used 

a model initially inspired by the factors included in the DRASTIC 

vulnerability model. The first iteration of the CCB model had a poor fit 

to observations at the validation wells (R2=0.064). Gurdak and Qi (2012) 

affirm that many DRASTIC model factors often identified as sensitive 

in national scale assessments were found not to be important when 

modelling contamination at the scale of the CCB. They recommended, 

for instance, to include dissolved oxygen (DO) as a sensitive parameter 

in the CCB-scale assessment. This suggests that explanatory factors 

and vulnerability models are highly sensitive to the scale of 

application. Four years later, Gurdak et al. (2016) examined these scale-

dependencies in more detail and further illustrated the scale-

dependency of the model and explanatory variables. They found that 

important differences in controlling factors were identified between 

the CCB- and national-scale models. They concluded by asserting that 

good management and policy decisions are best supported by models 

developed at the same spatial scale as the decision-making scale. 

Similar conclusions were obtained by Gross (2008), who affirmed that 

the explanatory factors may include challenges associated with scale 

or spatial autocorrelation. Vulnerability assessments and scale are 
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therefore highly intertwined (NRC, 1993), not only in technical 

application but also in conceptualisation. Therefore, Fekete et al. (2010) 

proposed three recommendations to address scale issues in statistical 

groundwater pressure models: i) scale implications (both benefits and 

drawbacks) need more attention and documentation within 

vulnerability studies; ii) the choice of the appropriate spatial level 

driven mostly by data availability, policy demand, and aim of the 

concept should also be supported by theoretical considerations; and 

iii)  the identification of appropriate types of scale (spatial, temporal) 

and types of nesting of phenomena (single-level, multi-level, and 

cross-level) should be a prior step to the conceptualisation of a 

statistical groundwater pressure model. 

 

In addition to the limitation related to the scale transition, we 

acknowledge that in our study the model is subjected to the classical 

uncertainties and modelling errors. Indeed, model predictions at the 

regional scale are likely to be contaminated by several different 

modelling errors (Donigan and Rao, 1986; NRC, 1993). According to 

Mulla and Addiscott (1999), these errors include modelling structure 

error, experimental data measurement error, model parametrization 

errors and, as mentioned above, scale transitions errors. Errors in 

model structure occur when the process and the assumptions 

represented by the model fail to represent reality. The example could 

be a model which simulates solute transport using the convective 

dispersive equation for a region in which two-region or macropore 

transport is significant. The scale-transition error is due to errors in 

extrapolation caused by spatial and temporal averaging of model 

parameters (Destouni, 1993), or due to bias caused when the 

calibration site is not representative for the region (Beven, 1993). Mulla 

and Addiscott (1999), argue that the scale-transition error is also due 

to the fact that processes which dominate broad patterns and trends at 

the larger scale may be obscured by other processes that dominate at 

the smaller scale. An example is the description of groundwater 
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contamination by nitrate-nitrogen at the regional scale in terms of 

regional patterns in precipitation, depth to groundwater, and soil 

texture. At local scale, variations in nitrate leaching to groundwater 

may more strongly be controlled by management practices such as the 

amount and timing of N fertilizer application than by local variations 

in precipitation, depth to groundwater, or soil texture. To conclude, 

these authors affirm that the rigorous validation of models at different 

scales is difficult for a variety of reasons. 

 

7.6 Conclusion  

To develop effective groundwater protection programs, we need to 

understand how natural and anthropogenic factors determine 

groundwater degradation. Within this paper, we evaluate the ability 

of a statistical model that was designed for predicting groundwater 

contamination by nitrates at the scale of the African continent to 

predict groundwater contamination by nitrates at the scale of 

individual African countries. We assess the results using datasets on 

groundwater contamination by nitrates from Senegal, Burkina Faso 

and South Africa. The assessment was poor for the Senegalese and 

South African dataset, but good for the Burkina Faso dataset when 

recalibration of the continental scale model was considered.  Many of 

the difficulties and limitations within this validation study were data-

related and resulted from, among others, lack of homogeneous nitrate 

data at the African scale, and uncertainties related to the explanatory 

variables. For example, the first limitation occurred when the model 

was used to predict the distribution of nitrates at the country scale. 

Additionally, uncertainties or bias in the reference data (coarse 

explanatory variables) were found to distort the performance of the 

model validation at the country level. This study highlights the 

necessity of developing a national-level political programme for the 

characterisation of groundwater vulnerability, firstly by constructing 

a good database of groundwater quality data, and secondly by 
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building a robust vulnerability predictive model for each country. The 

continental-scale model does not account either for local point sources 

of nitrate, or for features and processes that may promote focused 

recharge. Therefore, the continental scale model may not be 

appropriate to support local-scale decisions. To improve this poor 

predictive ability, future modelling efforts must address the many 

modelling errors related to model structure, model parametrization 

and, in particular, scale-transition.  

Besides the validation and recalibration, we have sought to determine 

the relative importance of the variables that determines nitrate 

contamination. Our results revealed that population density, nitrogen 

fertiliser application rate, groundwater depth, recharge rate, land 

cover and rainfall are the most important variables contributing to 

nitrate pollution in groundwater.  

In summary, our study showed that RF regression can be an effective 

technique for predicting nitrate contamination at the continental and 

country scale. Yet, caution should be paid to data quality. Better data 

availability and better quality data would, of course, help to make 

model predictions more accurate in the future. We therefore encourage 

national and regional agencies to strengthen the groundwater quality 

monitoring programs. This echoes Goal 6 of United Nations 

Sustainable Development Agenda, which recommends the 

establishment or expansion of water quality monitoring programmes 

at a national, regional and global scale.  
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Chapter 8 Time dynamic pollution risk 

modelling of groundwater at the African 

scale5 
 

 

 

  

                                                      
5 Ouedraogo, I., Girard, A., Defourny, P., Vanclooster, M., and Jonard, F. (2017). Time 

dynamic pollution risk modelling of groundwater at the African scale. To be submitted in 

Hydrological Sciences Journal. 
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8.1 Abstract 

Groundwater pollution risk modelling is an important asset to 

improve groundwater management and protection. In a previous 

study, we proposed a method for mapping groundwater vulnerability 

and pollution risk at the pan-African scale based on a “static” 

hypothesis (Ouedraogo et al. 2016). However, some of the parameters 

taken into account by this method may vary significantly over time 

such as recharge, land use, etc. Hence, vulnerability and pollution risk 

should also be considered as a time dynamic groundwater property.  

In this chapter, we assess the time dynamic behaviour of groundwater 

pollution risk at the continental scale, using the parametric DRASTIC 

model. We use the most recent continental scale data on soil, 

topography, land use, geology, hydrogeology, and climate in a 

Geographical Information System at the resolution of 15x15 km2 to 

implement the approach. We compared continental scale groundwater 

pollution risk for the years 1990, 2000 and 2010. The elaborated 

pollution risk maps show important variations of the spatial 

distribution of pollution risk between the three years. The maps reveal 

that changes are mainly concentrated in the area of the Nile Delta, in 

areas around the Lake Victoria, in North Africa, and in coastal West-

Africa (predominately in Nigeria). The increase of pollution risk is 

mainly related to the increase of the density of population of 

settlements areas in these regions.  

The proposed method for modelling the time dynamic groundwater 

pollution risk can support the monitoring of SDG Goal 6 which 

includes a focus on preserving our freshwater resources for potential 

future threats.  
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8.2 Introduction 

While groundwater represents 15 % of total renewable water resources 

in Africa, an estimated of 75 % or more of the population relies on it as 

their main source of drinking water (UNEP, 2010). However, 

degradation of groundwater by overexploitation and contamination is 

the most serious water resources problem in Africa (Xu and Usher, 

2006; MacDonald et al., 2013). Many unprotected groundwater 

resources are vulnerable to NPS (non-point source) contamination 

(Gurdak, 2014). In such a context, to manage and protect groundwater 

resources, a set of pollution risk assessment methods have been 

developed to estimate the potential for NPS groundwater pollution 

and to identify primary factors influencing the contamination level. 

According to Quevauviller (2008), a key step in assessing pollution 

risks is based on the analysis of the groundwater vulnerability (ease 

with which groundwater may be contaminated by human activities). 

Groundwater vulnerability assessment is therefore pivotal in 

groundwater pollution prevention and control (Huan et al. 2012 cited 

in Huang et al., 2017). It provides a method for evaluating the 

sensitivity of groundwater to contamination and scientifically 

defensible information for decision makers.  More than a hundred 

methods for assessing the vulnerability of groundwater pollution have 

been developed around the world (Amharref et al., 2015). 

Traditionally, these methodologies have been based on a “static” 

hypothesis that groundwater pollution risk does not change 

significantly over time (Butscher and Huggenberger, 2009). One of the 

traditional groundwater vulnerability models used is the DRASTIC 

method (Aller et al.1985; 1987).  Based on this method, pan-African 

groundwater pollution vulnerability was mapped in an earlier study 

(Ouedraogo et al., 2016).  

Yet, groundwater vulnerability and pollution risk are strongly 

dependent on factors such as depth to water, recharge, and land use 

and land cover conditions, all of which are influenced by climate 
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conditions (Li, 2012). A warming climate, for example, could alter the 

vulnerability of shallow aquifers by affecting depth of the water table 

and recharge (Toews and Allen, 2009; Scibek and Allen, 2006; Pointer, 

2005). Ducci (2005), affirms that patterns of regional groundwater 

pollution vulnerability will vary between drought, average, and wet 

periods. To this regard, it is important to introduce the time component 

in groundwater vulnerability and pollution risk assessments.  

In recent years, some studies have attempted to integrate the temporal 

dimension to investigate groundwater vulnerability evolution under 

varying environmental conditions and climate change (Luers et al. 

2003; Dennis and Dennis, 2012; Albuquerque et al. 2013; Pórcel et al. 

2014; Stevenazzi et al. 2015; Amharref et al. 2015; Xi et al. 2016; Paradis 

et al., 2016). For instance, Dennis and Dennis (2012) introduced time 

dynamics in the DART vulnerability method to investigate climate 

change impact on groundwater vulnerability for South-Africa 

aquifers. Stevenazzi (2015) focussed in their pollution risk assessment 

on the relation between temporal changes in groundwater 

contamination and land use.  Others compared vulnerability maps 

elaborated for different years, which highlights the key factors in the 

aquifer vulnerability variation (Saouini, 2014; Amharref et al. 2015).  

In this chapter, we assess the time dynamic groundwater pollution risk 

at the continental scale of Africa. In other words, we seek to develop a 

modelling approach to better understand the relationships between 

groundwater pollution risk and time dynamic drivers of this pollution 

risk such as land use. The incorporation of the time dimension into 

groundwater pollution risk map will facilitate the transfer of 

knowledge and information to decision-makers and is considered 

pivotal for the monitoring of groundwater systems, as for instance 

suggested in the SDG-6 monitoring strategy.  
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8.3 Material and methods 

8.3.1 Groundwater vulnerability modelling framework 

In a previous study, we determined the groundwater pollution risk at 

the pan-African scale using the Composite DRASTIC index 

(Ouedraogo et al., 2016).  The Composite DRASTIC index or CD index 

is an adaptation of the DRASTIC vulnerability index with the addition 

of a new parameter to define the risk associated with land use (L).  In 

this chapter, we used a multiplicative approach to combine land use 

with DRASTIC and to assess pollution risk. The same method was 

used by Meunier (2012). Indeed, according to Baghapour et al. (2016), 

this method allows achieving greater accuracy in the estimation of the 

nitrate pollution risk. The method uses the following equations to 

assess pollution risk: 

VI= DwDr + RwRr+ AwAr+ SwSr+ TwTr +IwIr + CwCr      (1)                                        

DVI = VI * LU                                                                            (2)                                                                                                     

where VI is the dimensionless  DRASTIC Vulnerability Index; D 

(Depth to groundwater), R (Recharge), A (Aquifer type), S (Soil media), 

T (Topography), I (Impact of vadose zone) and C (hydraulic 

conductivity) are the seven variables (or parameters) contributing to 

groundwater vulnerability and subscripts r and w are the 

corresponding ratings and weights. In equation (2), DVI is the 

Dynamic Vulnerability Index which is dimensionless and LU refers to 

the potential risk associated with land use. The higher the DVI, the 

greater the groundwater pollution risk. Each of DRASTIC index 

parameter of equation (1) was assigned ratings and a numerical 

weighting to reflect its relative importance in estimating groundwater 

pollution potential. According to Merchant (1994), ratings are intended 

to reflect the relative significance of data values (mapped “classes”) 

within each factor. Typical weights assigned to each parameter, 

following guidelines as given in the DRASTIC documentation (Aller et 
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al., 1987) (See Table 4.1 in Chapter 4). The weights for assessing time 

dynamic pollution risk are considered constant (Ehteshami et al. 1991). 

Table 8-1 show for each DVI variable the designated rating. They vary 

from 1 to 10, with higher values describing greater pollution. 

We deployed the general modelling framework as illustrated in Figure 

8-1, which is an adaptation from Huang et al. (2017). It shows the 

combined interactions of climate and land use change on groundwater 

vulnerability and pollution risk.  
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Figure 8-1: Impact of climate change, land use change, and environmental factors on groundwater (modified from Huang et al. 2017) 
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In general, land use and land cover are major attributes determining 

specific vulnerability and pollution risk. In this regard, due to the 

difficulty to build dynamic land use and land cover data sets, we used 

the normalised density of population (P) as a proxy for land use. This 

is consistent with our previous study showing that population density 

is one of the most relevant factors that explain the nitrate 

contamination at the African scale (Ouedraogo and Vanclooster, 

2016a).  
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Table 8-1: Weight, Range and Rating and of the DRASTIC parameters and Land-Use parameter (based on Ouedraogo et al., 2016, and Girard, 2017) 

 Depth to 

groundwater  

(D)(m) 

Net recharge 

(R) 

(mm/yr) 

Aquifer media(A) 

(type) 

Soil media (S) 

(type) 

Topography (T) 

(%) 

Impact of the vadose 

zone (I) (type) 

Hydraulic    

conductivity (C) 

(m/day) 

Land use (P) 

(people/km2) 

Rating Weight:5 Weight:4 Weight: 3 Weight:2 Weight:1 Weight:5 Weight:3 Weight:1 

1 >250 0-45 - Clay >18 - <0.010 0-50 

2 100-250 - - - - - 0.010-0.038 50-100 

3 50-100 45-123 

Acid plutonic rocks 

Intermediate 

plutonic rocks 

Basic plutonic rocks 

Metamorphic rocks 

Clay loam 

Silty clay loam 

12-18 - - 100-150 

4 - - - 

Sandy clay 

Sandy clay loam 

- 

Acid plutonic rocks 

Intermediate plutonic 

rocks 

Basic plutonic rocks 

Metamorphic rocks 

0.038-0.127 150-200 

5 25-50 - - Loam 8-12 - - 200-250 

6 - 123-224 
Siliciclastic 

sediments 

Sandy loam 
- 

Siliciclastic sediments 
0.127-0.345 250-300 

7 

 

- 

 
- - 

Loamy sand 
- 

Unconsolidated 

sediments 
 300-350 

8 

 

7-25 

 

224-355 

 

Unconsolidated 

sediments 
- 4-8 

Water bodies 
0.345-0.569 350-400 

9 

 
- >355 

Acid volcanic rocks 

Intermediate 

volcanic rocks 

Basic volcanic rocks 

Sand 

2-4 

Acid volcanic rocks 

Intermediate volcanic 

rocks 

Basic volcanic rocks 

- 400-450 

10 0-7 - 

Mixed sedimentary 

rocks 

Carbonate 

sedimentary rocks 

Evaporites 

- 0-2 

Mixed sedimentary 

rocks 

Carbonate 

sedimentary rocks 

Evaporites 

> 0.569 >450 
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8.3.2 Data sources 

To estimate the dynamic aspect of groundwater pollution risk at the 

continental scale of Africa, we used several data with various spatial 

resolutions and grouped them into two categories, i.e., static and 

dynamic parameters. We transformed the data to the reference 

resolution of 15x15 km2 as proposed by Ouedraogo et al. (2016). We 

obtained the dynamic groundwater risk map, after classifying and 

assigning relative ratings and weights, then overlaying the individual 

maps in a GIS. 

8.3.2.1 Dynamic Parameters Mapping 

This part will summarize the changing of groundwater net recharge, 

and density of population as land use proxy. For both dynamic 

parameters, mapping was elaborated on the basis of the data 

developed by Girard (2017). This mapping was done for 1990, 2000 and 

2010. 

Net Recharge (R) affected by climate change 

The ‘Net Recharge’, R and is a function of the precipitation. R represents 

the amount of water per unit area of land penetrating the ground 

surface and reaching the water table. It is thus influenced by the 

amount of surface cover, the slope of the land surface, the permeability 

of the soil and the amount of water that recharge the aquifer. Climate 

change will alter the hydrological cycle, including spatial and temporal 

changes in precipitation and evaporation (Huang et al., 2017). A 

number of investigations such as Gogu and Dassargues (2000); 

Raupach et al. (2013) suggested that climate change will affect directly 

groundwater recharge. We inferred R from the data prepared by 

Girard (2017). Due to lack of dynamic data of recharge evolution at the 

African scale, the relation in equation (3) was proposed as a tool to 

examine possible groundwater recharge trends in response to climate 

change: 
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R= 𝑃 − 𝐸𝑇 − 𝑄                                                                               (3)                                                                                                        

where R is the recharge (mm), P is the total Precipitation (mm), ET is 

actual evapotranspiration (mm), and Q is the Runoff in mm. These 

factors used to prepare recharge map data were extracted from Global 

Land Data Assimilation System Version 2 

(https://earthdata.nasa.gov/). The recharge map ratings (Figure 8-2) 

were assigned values following the classification suggested by 

Ouedraogo et al. (2016). 
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Figure 8-2: Rating of Recharge (R) map in Africa for 1990, 2000, and for 2010 



 

276 

 

The standard classification of recharge map is similar for the tree years.  

Africa has areas with low net recharge rate (<50 mm/year) for which a 

rating of 1 is assigned, and areas with high recharge ranges (>225 

mm/year), particularly in Central Africa and a portion of western 

Africa for which a rating of 9 is assigned. We observe an average 

variation of the recharge between 2000 and 2010.  For example, the 

variation can be observed near the Lake Victoria and Ethiopia in East 

Africa and Morocco in North Africa. These two maps indicate that 

climate change could affect groundwater net recharge. 

Density of Population (P) 

The second dynamic factor was ‘density of Population’, P. The 

population density is commonly represented as the number of people 

per square kilometers (person/km2). According to Alemayehu et al. 

(2006), who analysed the case of Addis Ababa, Ethiopia, the impact of 

the human population on surface and groundwater is increasing with 

the development of industry and population size. These authors affirm 

that the state of groundwater contamination in this city is similar to the 

reality of large cities in many developing countries. The level of 

groundwater contamination tends to rise with the increasing human 

population, particularly in urban areas and the low level of economic 

development. Indeed, recently a study carried out by Lapworth et 

al.(2017), affirms that faecal waste is the largest source of 

contamination in urban (and rural) groundwater, in particular where 

there is high-density housing with poor and/or inadequate sanitation 

facilities and treatment of faecal waste.  These authors say that this 

situation is common in low-income areas of most major and growing 

urban centres in Africa. Therefore, the “P” factor represents the 

distribution of potentially causative agents, considering that 

groundwater pollution is mainly human-caused. Data on population 

density at the African scale for the year 1990, 2000 and 2010 were 

developed by SEDAC and prepared in a raster grid by Girard (2017) 

(Figure 8-3). This factor was normalized and assigned ratings from 1 
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to 10. Ratings were obtained from a previous study (Vaezihir and 

Tabarmayeh, 2015; Girard, 2017) and adapted for our study area. 
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Figure 8-3: Rating of Density of Population (P) map in Africa for 1990, 2000, and for 2010
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8.3.2.2 Data of Static Parameters 

The ‘Depth-to-water-table’ (D), is the vertical distance from the land 

surface to the top of the saturated zone in the aquifer. It represents the 

distance that a potential contaminant must travel before reaching the 

aquifer. Consequently, the D will have an impact on the degree of 

interaction between the percolating contaminant and the sub-surface 

materials (air, minerals, water) and, therefore, on the degree and extent 

of the physical and chemical attenuation and the degradation process 

(Rahman, 2008). In general, the vulnerability for pollution decreases 

with D. Furthermore, with climate change over time, depth to water 

level in Africa is not static. However, in our case study, due to the 

absence of groundwater level variation between the three considered 

years, we assumed that the parameter D is “static”. The D value was 

calculated from the data as presented by Bonsor et al. (2011). The 

original value of this parameter was not continuous and was obtained 

in a categorical data format. The rate varies from 0 to more than 250 m 

bgl across the African continent. The assigned D ratings vary between 

1 to 10, according to the classification of Ouedraogo et al. (2016). Due 

to the importance of this factor in groundwater vulnerability to 

pollution, we decided to show explicitly the map of this static 

parameter (Figure 8-4). 

The aquifer type or aquifer media is also considered a static variable. 

The ‘Aquifer media’, A, refers to a type of consolidated or 

unconsolidated material which hosts the aquifer (Ersoy and Gültekin, 

2013).  The A map was inferred from three main data sources: (1) the 

high resolution global lithological database (GliM) of Hartmann and 

Moosdorf (2012); (2) the global permeability estimates of Gleeson et 

al.(2011); and (3) the African hydrogeology and rural water supply 

map of MacDonald et al. (2008). Africa has many different 

hydrogeological environments, but five of most important were 

categorized in the study: unconsolidated sediments, siliciclastic 

sediments, carbonate rocks, crystalline rocks and volcanic rocks 
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(Gleeson et al., 2014). The ratings of the A map were set according to 

the classification of Ouedraogo et al. (2016).  

 

For implementing the pollution risk model, we further assessed soil 

characteristics, topography (slope), the characteristics of the vadose 

and the hydraulic conductivity at the pan-African scale. Soils serve as 

the dominant sink for retention of pollution (Barrett and Burke, 2002), 

and impact the leaching of pollutants to deeper horizons. For this 

study, the soil map of Africa was inferred from the data processed by 

Hengl et al. (2014). Slope affects the likelihood that a contaminant 

deposited on the land surface will infiltrate through the soil (Li and 

Merchant, 2013). Low slope of area tends to retain water for longer 

periods, which allows a greater recharge of water and a greater 

potential for contaminant migration. The slopes were derived from the 

90-meter Shuttle Radar Topography Mission (SRTM90) database.  The 

vadose zone is a layer in between the aquifer and the soil zone. The 

vadose zone properties determine the attenuation behavior of the 

materials that are located above the groundwater table and below the 

soil. The vadose zone is also where processes of biodegradation, 

neutralization, mechanical filtration, chemical reactions, volatilization, 

and dispersion may occur (Aller et al. 1987). Similar to the aquifer 

parameter, the vadose zone parameter was elaborated on the basis of 

the GLiM data and the African hydrogeological map. The parameter 

was based on each parent material type that is the same as for aquifer 

media. Hydraulic conductivity is a property of an aquifer that 

describes the ability of water to move through the aquifer. According 

to Rahman A. (2008), an aquifer with high conductivity is vulnerable 

to substantial contamination as a plume of contamination can move 

easily through the aquifer. Hence, areas with high hydraulic 

conductivity values are more susceptible to contamination.  We 

inferred the hydraulic conductivity map from the global 

hydrogeological map of permeability and porosity, as produced by 

Gleeson et al. (2014). 
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All these factors were considered static in this study.  

 

 
Figure 8-4: Depth to groundwater (D) rates map for Africa 

 

The dynamic pollution risk maps were computed for three years (1990, 

2000, and 2010) and were implemented using the ArcMap Raster 

calculator. 

8.4 Results and discussion 

8.4.1 Dynamic maps of the groundwater pollution risk  

The results of the spatial pattern of DVI index are presented in Figure 

8-5. It is important to keep in mind that the DVI index is a continental 

index and that it should be used to identify areas that will be negatively 

impacted by land change with respect to groundwater. The risk index 

indicates the relative level of susceptibility to groundwater pollution. 

The pollution risk index is divided into five equal interval classes 

ranging from very low to very high. The DVI exhibits significant space 
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and temporal variability. Areas of higher vulnerability are shown in 

red with areas of lower vulnerability in green. We observe that 

pollution risk is significant in North Africa, West Africa (mainly 

Nigeria), the Lake Victoria or Great Lakes Regions in East Africa, Horn 

of Africa (Ethiopia) and the Nile Delta in Egypt. This is consistent with 

the previous findings of Ouedraogo et al. (2016). The maps elucidate 

the important effect of P on pollution risk which is consistent with 

previous studies (Xu and Usher, 2006; M’mayi, 2014; Ouedraogo and 

Vanclooster, 2016a). The highest values are located in the Western part 

of Africa (Nigeria). When looking at the time dynamics, we observe 

that the pollution risk increases in the highly vulnerable areas. 

Vaezihir and Tabarmayeh (2015) affirm that risk of groundwater 

pollution is directly related to population density which increases with 

the population growth in urban areas. As mentioned above, Lapworth 

et al. (2017) demonstrated that the greatest nitrate contamination was 

in groundwater sources in settlements with extremely high population 

densities (over 40,000 people per km2). Many authors affirm that 

informal settlements are associated with high levels of nitrate, nitrite, 

and organic compounds (Gwebu, 2003; Ren et al., 2003; Wright, 1999). 

For example in the city of Harare (Zimbabwe), rapid urbanisation and 

the lack of low-cost accommodation have led many people to settle 

(formally or otherwise) on previously land in Epworth, south-east of 

the city (Zingoni et al. 2005). Half of the population of Epworth makes 

use of the groundwater resources for their domestic water supply. This 

number increases as high as 77 % in the most recently-settled area. 

According to Love et al. (2006), the Epworth settlement thus showed 

major problems with levels of nitrogen (representing nitrates) and 

coliform bacteria in groundwater. This is a cause for concern, since the 

area has a high water table and high population density, leading to an 

elevated risk of contamination for shallow wells supplying half the 

population of the settlement with water (Love et al., 2006). Urban 

growth exhibits high rates in parts of East & West Africa. Urban low 

income population growth is very high (Lapworth et al.2017). But, 
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while the evidence indicates that the lower-income households are 

substantially more vulnerable to anthropogenic impacts on water 

quality (Yang et al, 2013), few studies have specifically examined the 

extent to which groundwater quality trends impact the poor and their 

wellbeing (UPGro, 2017). By studying recently groundwater and 

poverty in sub-Saharan Africa, UPGro (2017) argues in theirs report 

that: “a greater vulnerability is likely for several reasons. First, the poor are 

less likely to have access to treated, piped water and hence more likely to rely 

on shallow groundwater for drinking. Second, the urban poor are more likely 

to live in densely populated areas, where sanitation and waste disposal are 

inadequate, and contamination risks are highest. This is evidenced by the 

study of Sorensen et al. (2015a), which notes that groundwater contamination 

was most extensive in areas of low cost housing. Third, low-income 

groundwater users are more likely to have poorly constructed wells, with 

inadequate or absent protection measures and rudimentary lifting devices. 

Fourth, the poor are less likely to undertake household water treatment.” 

Furthermore, according to Jourda et al. (2006), among the major threats 

to the urban aquifer in Abidjan, there is the absence of an institutional 

framework. 

With respect to the desert of Sahara, due to low population density and 

agricultural land use, we observed a low pollution risk. The relative 

risk with respect to a reference year is given in Figure 8-6. We observe 

three poles the high-risk with an increase groundwater vulnerability 

to pollution (50 to 100 % over 20 years). The South of Sahara is also 

facing a very high level of risk (> 100 % in 20 years). The Nile delta 

presents a contrasted evolution which is much less clear. Finally, the 

coasts of Morocco, Algeria and Tunisia and the south-eastern region of 

Lake Victoria are marked by a 10 to 50 % reduction in the risk of 

pollution over the same period. In overall, the Figure 8-6 illustrates a 

significant increase in pollution risk for the Sudan-Sahel belt of Africa 

and around the Great Lakes Region between 1990, 2000, and 2010. The 

absolute change in pollution risk is given in Figure 8-7. This figure 

confirms the findings in Figure 8-6.
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Figure 8-5: Groundwater pollution risk for 1990, 2000, and 2010  
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Figure 8-6: Relative comparison of groundwater pollution risk for 1990, 2000, and 2010  
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Figure 8-7: Absolute comparison of groundwater pollution risk for 1990, 2000, and 2010 
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Table 8-2 presents the results of the increasing trend from low to very 

high pollution risk during the period of 20 years computed from the 

Figure 8-5.  The values in this table confirm that the pollution risk for 

groundwater in Africa increased considerably. For example, the 

percent from 1990 to 2010 in pollution risk class of high and very high 

were 0.55 %, 0.87 %, 1.26 %; and 0.29 %, 0.48 %, 0.76 % respectively, 

which demonstrates that the surface of the risk of pollution follows an 

increasing trend. The results of this table confirm the visualization 

observed on the three maps in Figure 8-5. The results of Table 8-2 are 

also represented in the diagram (Figure 8-8) to a better visualization. 

 

Table 8-2: Percent of different pollution risk classes 

Pollution risk class 

Year/period Very 

low 

Low Moderate High Very 

high 

Year 1990 91.98 % 5.5 % 1.66 % 0.55 % 0.29 % 

Year 2000 81.63 % 6.49 % 2.50 % 0.87 % 0.48 % 

Year 2010 86.79 % 7.94 % 3.22 % 1.26 % 0.76 % 
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Figure 8-8: Diagram in percentage of pollution risk for 1990, 2000, and 2010 
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8.4.2 Limitations of the study  

In this study, we modelled the time dynamic groundwater pollution 

risk at the African scale in terms of a set of explaining natural and 

anthropogenic factors. These factors were combined in a linear model 

to model groundwater vulnerability and pollution risk. However, 

according to Li and Merchant (2013), it is recognized that the actual 

physical processes leading to groundwater contamination are not 

necessarily linear and often involve complex mechanisms such as 

pollutant transport, dilution and dispersion, adsorption, and chemical 

and biological transformation. Furthermore, Ouedraogo et al. (2017) 

demonstrated that the best statistical model to explain groundwater 

nitrate contamination at the African scale is a nonlinear model. The 

linear model used in this study can over- or under-estimate 

groundwater pollution risk. Still, the linear modelling approach has a 

significant advantage in that it simplifies complex groundwater 

contamination processes and can facilitate rapid regional evaluation 

based on well recognized key environmental and anthropogenic 

factors. 

It should be noted that the groundwater pollution risk maps 

developed for this research portray only the risk of pollution on a 

continental scale, and cannot be used to interpret incidences of actual 

local groundwater contamination. A low pollution risk does not mean 

that there is no risk of contamination; it simply means that the geology 

and hydrogeology of the area provide more natural (or intrinsic) 

protection to the groundwater resources in the given environment. 

One must look at the land use activities and potential hazards 

associated with such activities to predict the likelihood of 

contamination. However, these maps provide a preliminary 

assessment of the dynamic aspect of groundwater pollution risk at the 

African scale, and may also support risk assessment when combined 

with specific hazards. In addition, the modelling results are also 

subject to the uncertainty from resampling of the relatively coarse 
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resolution climate data, natural factors and anthropogenic data. In 

addition to climate change data uncertainties, other uncertainties are 

associated with data sources, such as for example depth to 

groundwater described by Bonsor et al. (2011). 

8.5 Conclusion  

By introducing the time dimension to assess trends in groundwater 

vulnerability is an innovative approach to study the pollution risk. In 

this study, the DVI index was calculated and mapped at the African 

scale to identify areas that experienced possible changes in pollution 

risk of groundwater between 1900 and 2010. This mapping approach 

was based on public available data. The results identified regions in 

Africa where groundwater may represent a major threat due to the 

anthropogenic pressures changes over time. The pollution risk degree 

of African groundwater varies from very low to very high. We 

observed that the spatial pattern of pollution risk at the pan-African 

scale has changed over the time between 1990, 2000 and 2010. 

Groundwater vulnerability to pollution greatly varies across Africa. 

This variation was clearly visualized for example in North Africa, in 

the Nile Delta, and in West Africa. The zone with the highest pollution 

risk at the scale of the continent is the Western Africa area, which is 

highly urbanized and densely populated. These results suggested that 

with the growing population, who generates rapid urbanization with 

many slums and increasing water demand, the groundwater 

vulnerability and pollution risk would also increase.  

 

Although there are limitations to the assessment of the dynamic 

groundwater vulnerability, particularly the absence of depth to water 

changes for the continent. However, these maps represent the existing 

data and allow for preliminary interpretation of the spatiotemporal 

evolution of groundwater in Africa, in terms of climate and land use 

change. Vulnerability maps and groundwater pollution risk maps are 
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basic tools to assess the efficacy of land use planning toward 

groundwater protection.  

 

As more data become available over time (e.g. water level change), this 

result may be reassessed and updated for characterizing the dynamic 

aspect of African aquifers. Future work will implement sampling 

design through Africa and provide data for testing the model 

robustness.  

 

Notwithstanding the many limitations, the modeling approach used 

here appears well-suited for linking groundwater vulnerability with 

climate change and population density as a proxy for land use change. 

The simple DVI model allows modelling the time dynamic pollution 

risk at the pan-African scale using public available data. This can, 

therefore, provide an important tool for the sustainable groundwater 

resources management in Africa. The model could be used to monitor 

the achievement of  SDG Goal 6 in Africa which includes a focus on 

preserving freshwater resources for potential future threats. For 

example, this research could perhaps aid groundwater managers at the 

African scale such as African Ministers Council on Water (AMCOW) 

in selecting prioritizing areas for future groundwater monitoring and 

protection. 
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Chapter 9 Conclusion and Perspectives 
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9.1 Main findings 

Groundwater vulnerability maps are largely considered to be an 

essential component of sustainable land use planning and 

management in developed and especially in developing and 

underdeveloped countries (Sorichetta, 2010). Groundwater 

vulnerability maps represent the final result of implementing a spatial 

model to depict the relative susceptibility of groundwater to 

contaminant loads applied over the land surface. Thus, characterising 

the vulnerability to contamination of groundwater resources, 

particularly in shallow aquifers, should help decision-makers to 

evaluate current land use practices, make recommendations, 

implement regulation changes and/or introduce new rules in order to 

better prevent or minimise groundwater contamination and hence 

preserve its quality. To this end, Wang et al. (2014) affirm that the water 

quality in Africa is facing severe challenges. Therefore, the 

improvement of water quality and wastewater treatment is of vital 

importance to achieve the SDGs (Sustainable Development Goals). In 

this thesis, we filled a significant knowledge gap in groundwater 

pollution pressures at the continental scale of Africa by developing 

methods for assessing groundwater vulnerability to pollution at the 

pan-African scale in space and time. We also identified key 

environmental factors that explain nitrate pollution in groundwater 

and finally validate these methods.  

 

The first objective of this thesis was to assess groundwater 

vulnerability to pollution at the pan-African scale. We, therefore, 

aimed identifying which aquifer systems/groundwater resources and 

settings are most vulnerable to degradation. Necessary data for land 

use, soil, topography, and geological and hydrogeological features in 

the study area were collected from different sources. To do asses this 

vulnerability we deployed the empirical DRASTIC index model and 

GIS techniques at the pan African scale. Seven environmental 
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parameters including “depth to water”, “net recharge rates”, “aquifer 

media”, “soil media”, “topography”, “impact of vadose zone”, and 

“hydraulic conductivity” were used to represent the natural 

hydrogeological context. These data have been compiled into a 15x15 

km2 resolution geodatabase for the African continent and used to build 

the seven parameters of the DRASTIC vulnerability index. In Chapter 

4, we attained our first objective by showing clearly; through mapping 

that groundwater resources in Africa are vulnerable and subject to 

pressures. In short, the first pan-African groundwater vulnerability 

and pollution risk map developed in the thesis showed that areas 

under very high and high pollution risk are mainly characterised by 

shallow groundwater systems. Inversely, low contamination risks are 

observed for the large sedimentary basins in North Africa, and a small 

portion of Eastern and Southern Africa. These groundwater systems 

are situated at greater depths. The risk map of groundwater pollution 

in Africa shows that water resources are mainly under pressure in 

large agricultural basins. A validation of the DRASTIC based 

vulnerability approach is also shown in this Chapter 4. To this, we used 

nitrate concentration data at the pan-African scale were inferred from 

a literature meta-analysis (Ouedraogo and Vanclooster, 2016a). Results 

of validation show a good match between nitrate concentration and 

the groundwater pollution risk classes, i.e. the results of the map agree 

with the actual nitrate pollution situation reported in the literature. 

High nitrate concentrations detected in the literature coincide with 

high intrinsic vulnerability and high pollution risks. This illustrates the 

consistency between the calculated vulnerability and groundwater 

pollution risk using generic data on the one hand, and the observed 

contamination on the other. A scatterplot between the nitrate 

concentration in groundwater and the DRASTIC map shows that 

groundwater pollution risk is consistent with observed nitrate inferred 

from the literature. The relation between maximum nitrate 

concentration and the intrinsic vulnerability and the risk for pollution 

is respectively of R2 = 0.89 and R2 = 0.65.  We conclude that the first 
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main objective of this research shed, therefore, light on the pollution 

problem posed by shallow groundwater in Africa. 

 

Our second main objective was to build a meta-database of nitrate 

through a meta-analysis of the available literature, to develop a 

statistical model and to identify environmental factors that explain 

nitrate pollution in groundwater at the pan-African scale. This 

objective was fulfilled in Chapters 5 to 6. In these chapters, the 

available literature data for nitrate are used. Statistical and regression 

analyses are used to identify the key factors that significantly influence 

nitrate concentration in groundwater. Statistical methods range from 

simple descriptive statistics of nitrate data to more complex statistical 

analyses that include nonlinear techniques. Groundwater 

contamination by nitrates is reported throughout the African 

continent, except for a large part of the Sahara desert. The observed 

nitrate concentrations range from 0 mg/L to 4625 mg/L. In Chapter 5, 

the analysis of correlation through the graphical box plot has 

highlighted that nitrate contamination is important in shallow 

groundwater systems and strongly influenced by population density 

and recharge rate. Nitrate contamination is, therefore, a particular 

point of concern for groundwater systems in urban sectors, and for the 

effect of agricultural practices on groundwater. Multiple Linear 

Regression (MLR) is performed to identify the relevance of 

anthropogenic factors and natural factors for nitrate pollution in 

groundwater (Chapter 5). The MLR model for the log-transformed 

mean nitrate concentration uses “the depth to groundwater”, 

“groundwater recharge rate”, “aquifer type” and “population density” 

as explanatory variables. The total variability explained by the model 

is 65%. This suggests that other variables may be needed to explain the 

reported nitrate concentrations. These findings highlight the 

challenges in developing appropriate regional databases to predict 

groundwater degradation. The MLR shows that the population 

density parameter is the most statistically significant variable. This 
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authenticates the theory that leaking cesspits and sewer systems are 

considerably causing nitrate contamination of groundwater 

predominantly in urban areas. We identified a similar MLR model for 

the log transformed maximum nitrate concentrations. Yet, for this 

latter attribute, the explained variation using the simple MLR 

techniques (i.e. 42 %) remains small. 

 

In spite of weaknesses and uncertainties caused by a moderate 

heteroscedasticity from residuals in the MLR model, the modelling 

approach presented is appealing. To avoid some limits MLR such as 

heteroscedasticity, we suggested non-linear modelling techniques as 

an alternative to MLR such as Random Forest (RF) techniques. Such 

techniques have the potential to improve the quality of explanation 

and eventually prediction. RF allowed the explanatory variables to be 

classified according to their importance ranking, and better explain the 

relationships between nitrate concentrations in groundwater (Chapter 

6). The results of MLR compared to RF in Chapter 6 illustrated that the 

RF outperforms as compared to MLR in modelling of pan-African 

nitrate concentration.  

 

The two statistical approaches developed in Chapters 5 and 6 have 

demonstrated the unambiguous link between population density 

(urban areas, agricultural activity) and pollution of groundwater by 

nitrates. Recently, Lapworth et al. (2017) affirms supporting the 

findings of Ouedraogo et al. (2016). According to the findings of 

Sorensen et al. (2015a), the majority of African wastewater is currently 

discharged without treatment. This last affirms that contamination is 

most extensive within shallow wells sited in areas of low-cost housing, 

due to inadequate sanitation, household waste disposal, and, 

significantly, poor well protection and construction. And the lack of 

quality water and poverty drive untreated wastewater use in urban 

and peri-urban agriculture. This is a common pattern in sub-Saharan 

Africa and other poor regions where there is no economic capacity to 
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afford conventional sanitation and wastewater treatment facilities. 

This poses health, environmental and agriculture risks if no additional 

measures are applied (Mateo-Sagasta and Burke, 2012). Furthermore, 

by studying nitrate pollution of groundwater by pit latrines in 

developing countries such as the peri-urban areas surrounding Dakar, 

Sénégal, Abidjan, Côte d’Ivoire, and Abomey-Calavi, Benin in the 

summer of 2014, Templeton et al. (2015) highlighted the risk posed by 

pit latrines to groundwater quality in terms of nitrate pollution, 

specifically in low-income, densely-populated peri-urban areas with 

only basic forms of onsite sanitation and high water tables. Also, 

Graham and Polizzotto (2013) affirm that latrines are important 

sources of groundwater contamination in Africa. A recent study of 

UPGro (2017) on groundwater and poverty in sub Saharan Africa 

affirms that some aspects of groundwater access may be 

disadvantageous to the poor. Indeed, according to the UPGro (2017) 

report, in rural areas, shallow groundwater accessed by poorer 

households in or near river beds or via shallow hand-dug wells may 

be more contaminated than deeper groundwater which may be 

accessed by wealthier households. Boy-Roura (2013) affirms that 

financial cost are also associated to poor water quality. Because, nitrate 

pollution in groundwater implies additional drinking water treatment, 

construction of new wells, monitoring of other safe drinking water 

actions (Boy-Roura, 2013). 

 

In addition to the density of population, which is the top relevant 

variable found in both techniques, other factors affect the pollution of 

nitrate in groundwater. These comprise nitrogen fertiliser application 

and natural factors such as recharge, depth to groundwater, rainfall, 

and aquifer characteristics. Therefore, the study of the occurrence and 

transport of nitrate in groundwater requires acknowledgment of 

complex relationships among these different variables.  
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Our third objective presented in Chapter 7, consisted of using regional 

datasets of nitrate measured in groundwater for validating nonlinear 

statistical modelling at the pan-African scale. While the model 

calibration at the pan-African scale showed very good results, the 

validation step showed a disappointing predictive ability at the 

regional scale. We concluded that nitrate measurement data at a 

regional scale cannot reasonably be used to accurately validate the 

continental-scale groundwater statistical model, due mainly to a scale 

issue. Some aspects related to the scale issues in remote sensing were 

reviewed by D’Andrimont (2017).  

 

A final objective, presented in Chapter 8, consisted to integrate 

dynamic drivers of pollution risk such as land use and climate in the 

continental scale vulnerability and pollution risk modelling approach. 

The conclusions drawn from this Chapter indicated that the 

groundwater vulnerability to pollution across Africa varies also 

considerably in time. We observed that the spatial pattern of pollution 

risk at the pan-African scale has changed over the time between 1990, 

2000, and 2010. The zone with the highest pollution risk at the scale of 

the continent is the Western Africa area, which is highly urbanized and 

densely populated.  We found that the percent in pollution risk class 

of high and very high changed during 20 years from 0.55 % to 1.26 %; 

and from 0.29 % to 0.76 % respectively, which demonstrates that the 

surface of the risk of pollution follows an increasing trend.   
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9.2 Implications for science and policy: Addressing 

the challenges  

This thesis research participates indirectly in achieving SDG 6, which 

includes a focus on preserving our freshwater resources. As 

highlighted in this thesis research, groundwater contamination and 

pollution problems are a growing threat to African continental 

development and urgently need to be addressed. The map shows an 

interpretation of the groundwater resources map of Africa in terms of 

groundwater sensitivity towards pollution. Continued concern about 

contamination of groundwater resources makes vulnerability 

assessments important tools for water-resource managers and policy 

makers (Gurdak, 2014). The conception of the vulnerability map is to 

assist both laymen and professionals in water resources. In our study, 

we make an assessment of the vulnerability of groundwater at the pan-

African scale. We validated the approach based on a meta-analysis of 

pollution caused by nitrates. We see possible applications in many 

management domains.  

First, a groundwater vulnerability map at the pan-African scale did not 

exist yet. Many previous products in this domain have been developed 

but merely focused on quantitative aspects, such as the groundwater 

map (WHYMAP, 2008; MacDonald et al. 2012; Altchenko et al. 2014), 

the drought vulnerability map for Africa (Naumann et al. 2014) and 

the global map of vulnerability to floods and droughts (Jaroslav Vrba 

(UNESCO-IHP), Andrea Richts (BGR), 2015). Only recently have water 

quality aspects been addressed at these large scales, such as Ippolito et 

al. (2015) who developed a global pesticide runoff vulnerability map 

with a generic indicator model. With respect to groundwater pollution, 

issues were addressed for specific pollutants such as arsenic and 

fluoride contamination in groundwater (Amini et al. 2008a, and 

2008b). However, no general vulnerability map is available. With our 

study, we fill this existing gap.  
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Second, large-scale vulnerability maps raise the awareness of policy 

makers and water managers about the vulnerability of this precious 

water resource system and increase the overall concern to develop 

appropriate protection programmes.  

Third, improving the assessment of water quality at a large-scale 

should be based on the appropriate monitoring. This assessment is 

needed to evaluate the compliance of different countries with overall 

political commitments, such as the commitment to reach sustainable 

water management in the WFD in Europe, or to reach the SDG at the 

UN level. Hence, smart monitoring of water quality at a large scale is 

needed. We believe that smart monitoring of groundwater quality 

should be based on vulnerability. Monitoring should be concentrated 

primarily in areas that are vulnerable. Hence, vulnerability maps can 

help to optimise the smart large-scale monitoring programme.  

Fourth, we believe that vulnerability can be very useful for rural and 

urban planning. Vulnerability can help to identify those locations that 

deserve particular protection in urban and rural development projects 

and programmes.  

The pollution risk map should serve as a general guideline for planners 

and decision-makers with land-use development issues. It is also 

useful to scientists in government agencies and consulting companies. 

Furthermore, it is designed to make the general public aware of the 

pollution risk of water resources and to direct their attention towards 

the rational use and protection of both groundwater and surface water 

resources. In this respect, this research could serve as a good example 

for establishing a pan-African groundwater network like the strategies 

employed in Europe and the United States to establish large-scale 

groundwater monitoring networks and groundwater protection 

programmes. Groundwater protection and alleviation at the pan-

African scale is not optional and acknowledging the role of 

groundwater is paramount to successfully implementing the SDGs. 

Remediation should be developed at both the continental and regional 
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scale. The solutions that can be proposed to mitigate and improve the 

situation have been partially addressed by Xu and Usher, (2006): 

i. Political will: Groundwater quality protection is closely related 

to the government policy towards economic development and 

the political will for sustainable development and utilisation of 

resources. Our study may increase support for AMCOW 

(African Ministerial Council on Water) to proceed with 

groundwater protection programmes at the pan-African level. 

For example, the implementation of resolutions at the Pan-

Africa Conference on Water (December 2003 in Addis-

Ababa/Ethiopia) organized by AMCOW, are a good start for 

correct regulation of policies for successful protection of water 

resources. 

ii. Capacity building and technical skills: Africa has little capacity 

to challenge groundwater degradation and there is a need to 

boost this capacity through appropriate capacity building 

programmes. As an example, capacity building can be 

increased by (a) the establishment of more formal networks of 

African universities working on water and sanitation; and (b) 

improving communication by increasing access to internet 

facilities. 

iii. Knowledge dissemination: Awareness of groundwater 

resources in Africa is low. There is a need to improve the 

knowledge of groundwater systems for decision-makers and 

for the broader public. This thesis may contribute to the 

increase in groundwater awareness. For example, in Africa, the 

number of technical people involved in groundwater studies is 

small. 

In addition to these 3 main solutions above, which we recommend to 

decision-makers, we think that the African decision-makers for water 

resources must urgently elaborate groundwater protection 

programmes that are based on groundwater monitoring and data 



 

304 

 

management. Such programmes can be boosted through a multilateral 

organisation such as the African Groundwater Commission or SADC, 

ECOWAS, the Nubian Aquifer Regional Information Systems 

(NARIS), The North Western Sahara Aquifer System (NWSAS) (better 

known under the acronym SASS for its French name “Système 

Aquifère du Sahara Septentrional”). Various institutions are working 

in many countries but they are scattered, isolated and uncoordinated. 

Groundwater management organisations should be created and 

connected with existing river basin organisations. Cooperation 

between neighboring countries is, therefore, a requirement if we are to 

reduce the risks of degradation and allow the sustainable use of these 

shared resources. 

The African groundwater pollution index maps in this study could be 

used for feasibility studies to be conducted at a regional scale and in 

assessing the relative differences in pollution potential between 

regions. These maps support the possibility of using nitrate as an 

indicator tool for water management. It is hoped that these maps will 

encourage regional planners to conduct further feasibility studies to 

pursue economically feasible pond-based small-scale supplemental 

groundwater pollution treatment schemes. Conflicts related to 

transboundary aquifer management often exist, especially when the 

resource is limited or overexploited and exposed to toxic waste. 

We think that groundwater monitoring in Africa needs to be addressed 

as a matter of priority. Based on the research conducted in this thesis, 

several factors for nitrate pollution have been highlighted. Of great 

concern is the fact that for many of these factors, the currently available 

datasets show that very little attention has been paid to the 

constituents in most groundwater monitoring programmes. Two 

sources of nitrate pollution are highlighted: urban areas and 

agricultural domains. High nitrate concentrations have been found to 

occur from sources ranging from agricultural fertilisers to pit latrines 

to explosives companies. There is no directed programme to monitor 
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nitrate in urban and peri-urban areas and hence there is a gap in 

information. 

The pan-African map is intended for continental (multicountry) or 

sub-regional (e.g. ECOWAS, SADC, IGAD region) use and has several 

limitations because it does not reflect local conditions. Each map type 

should only be used for the purpose for which it was produced (Vrba 

and Zaporozec, 1994). Areas of high risk on the map have a high 

potential for nitrate contamination but are not necessary 

contaminated. A low vulnerability does not mean that there is no risk 

of contamination; it simply means that the geology and hydrogeology 

of the area provide more natural (or intrinsic) protection to the 

groundwater resources. Despite the issue of possible bias and 

uncertainties noted in the dataset collected for this dissertation, we are 

very optimistic about the robustness of the models for predicting 

contamination at the continental scale.  

Firstly, for example, the model of MLR that was obtained used 

population density, shallow groundwater, aquifer type, and recharge 

as explanatory variables. This is consistent with a study from 

UNEP/DEWA (2014) in 11 countries across Africa which stated: 

 “The level of protection at the wellhead strongly influences the 

quality of the well water. This is a vital aspect of protecting 

groundwater quality. Sanitation must not be delinked from 

Groundwater Protection”. 

 “Recharge from multiple sources influences groundwater 

microbial and chemical water quality”. 

 “The magnitude of contamination is also strongly affected by 

the population density and socio-economic setting”. 

 “Groundwater pollution and vulnerability issues are affecting 

all developing countries with increasing urbanisation”. 

Secondly, the RFR results presented in Chapter 6 show that this is a 

promising technique for modelling groundwater degradation because 
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of its ability to provide meaningful analysis of nonlinear and complex 

relationships such as those found in hydrogeological studies. The RFR 

model determined the factors that significantly influence nitrate 

pollution, which are: aquifer type, rainfall, and density of population. 

The explained high variation of the RFR paves the way for creating 

water quality maps at the continent scale. Such maps are considered 

essential tools for developing groundwater management and 

development programmes, including transboundary groundwater 

management. 

 

The statistical tools presented here are designed to give a continent-

wide view of groundwater contamination by nitrates and to encourage 

the development of more qualitative national and sub-national models 

and assessments to support the development of groundwater-based 

adaptation strategies for current and future climate variability. 

Inevitably these results can be improved. They should be viewed as a 

first attempt to provide quantitative statistical modelling of nitrate 

contamination in groundwater for Africa and furthermore provide a 

strong basis for future studies when homogeneous data without bias 

will be available at the African scale. 

 

Notwithstanding some limitations related to data, the simple Dynamic 

Vulnerability Index (DVI) model allowed modelling the dynamic 

aspect of pollution risk at the pan-African scale using public available 

data. This is therefore an important tool for the sustainable 

groundwater resources management in Africa. The DVI could be used 

to monitor the achievement of SDG Goal 6 in Africa which includes a 

focus on preserving freshwater resources for potential future threats. 

 

All methodologies presented in this thesis can be easily applied both 

to larger areas, and small areas, and used as a decision support tool for 

evaluation of legislative and management measures, aiming to reduce 

nitrate contamination risks. Although the present work was directed 
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toward the vulnerability of groundwater to agricultural chemicals, of 

which nitrate was the exemplar, the methods developed in the course 

of this study are not specific to agricultural chemicals in groundwater. 

The same approach could easily be applied to other forms of pollution 

such as fluoride and arsenic. 

 

An example of indirect implication for science and policy of this Ph.D. 

research: 

In a new landmark study just published by Lapworth et al. (2017), 

reviewed all the available data and studies on urban groundwater 

across the continent and build up a map of aquifer pollution risk. The 

Figure 9-1 showed the spatial distribution of the 31 studies included in 

the analysis of nitrate in urban groundwaters. Unlike that recent study, 

the analysis described in this paper differentiates boreholes from 

shallower groundwater sources, incorporates one measure of nitrate 

load into the aquifer (population density), and explicitly accounts for 

sample size variation between studies via random effects meta-

regression. 
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New pollution risk maps for Africa to help with achieving safe water 

for everyone 

 

 
Figure 9-1: Media Release: World Water Day 22 March. Relationship between urban centres 

in sub-Saharan Africa (SSA) and estimated aquifer pollution risk using an intrinsic aquifer 

modelling approach (Ouedraogo et al. 2016). The location of studies included in the paper are 

shown. Major cities in SSA are shown and are from the ESRI cities dataset (2006) (Lapworth 

et al.2017). 

From his study, the lead researcher, Dr. Daniel Lapworth, of the British 

Geological Survey, said: “Despite the risk to the health of millions of people 

across the continent, very little is routinely monitored. If there is any chance 

of achieving the Sustainable Development Goal targets – and adapting to 

climate change – it is essential that governments and water utilities routinely 

monitor groundwater quality and take appropriate action to protect their 

precious water resources.” 
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“However, we are excited that our research through has developed a low-cost 

and robust way for measuring groundwater quality(Sorensen et al.2015b), 

and this approach is being rolled out in our work in Africa and India.” 

 

This interview is for Media Release for Responding to UNICEF/WHO 

report on Safely managed drinking water. Accessed online  October 2nd 

2017: https://upgro.org/2017/03/13/new-pollution-risk-maps-for-

africa/.  

 

9.3 Limitations of the study and perspectives for 

future research 

In spite of the achievements described previously, this study has 

several limitations. 

First limitation, the pan-African groundwater vulnerability to pollution 

map developed in Chapter 4 is intended for continental (multicounty) 

use or sub-regional use and has also several limitations. For example, 

the overall utility of a vulnerability map is dependent on the scale at 

which the map has been compiled, the scale at which data were 

gathered, and the spatial resolution of mapping (NRC, 1993). The 

notion of scale is central to the thesis. Vulnerability maps, which are 

the most visible products from groundwater vulnerability assessment, 

are subject to inherent uncertainty (Gurdak et al., 2007). Factors 

influencing NPS contamination are never completely realised and thus 

spatial and temporal representations (GIS data coverage) of these 

variables are subject to uncertainty. This uncertainty can be 

compounded and propagated through the analysis of the final mapped 

product, as Heuvelink et al. (1989) and Gurdak et al. (2007) have 

demonstrated. Consideration of error propagation is particularly 

relevant and should be addressed when using continuously 

distributed random variables within GIS-based vulnerability maps 

(Gurdak, 2008). Furthermore, in this research as noted in Chapter 4 is 

that the explained variability in the boxplots and scatterplots is still 

https://upgro.org/2017/03/13/new-pollution-risk-maps-for-africa/
https://upgro.org/2017/03/13/new-pollution-risk-maps-for-africa/
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rather low, showing that quite some scope exists to calibrate and to 

improve the proposed vulnerability and groundwater risk mapping 

procedure. In our study, we use the linear model to modelling 

dynamic aspect of groundwater vulnerability to pollution risk. The 

linear model used in this study can over- or under-estimate 

groundwater pollution risk. Because it is recognized that the actual 

physical processes leading to groundwater contamination are not 

necessarily linear and often involve complex mechanisms such as 

pollutant transport, dilution and dispersion, adsorption, and chemical 

and biological transformation (Li, 2013). Furthermore, it was 

demonstrated that the best statistical model to explain groundwater 

nitrate contamination at the African scale is a nonlinear model 

(Ouedraogo et al. 2017). Thus, use linear model to modelling 

groundwater vulnerability to pollution presents some limits. 

 

Second limitation, the information gained from the analysis of historical 

groundwater quality data was restricted to Nonpoint-Source (NPS) 

nitrate contamination, due to data availability in general. Therefore, 

NPS NO3- data was one of the major constraints with regards to 

developing the modified DRASTIC model. For a large part of Africa 

there is very little or no systematic monitoring of groundwater. To this 

regard, Baisch (2009) affirms that Africa is not only suffering from 

water shortage but also from data shortage. Furthermore, according to 

Fan et al. (2013), Africa is the most data-poor region with limited 

records (<0.001%) of global shallow groundwater records. Therefore, 

in the absence of a systematic data monitoring programme, we 

compiled groundwater nitrate pollution data at the pan-African scale 

from different sources in published literature and personal contacts 

with local water authorities. Thus, lack of available data and its relation 

to the scale of the map are major limitations. Our database of nitrate 

was based on approximately 250 published studies. We acknowledge 

that bias exists in our dataset and this bias may be due to multiple 

reasons, as stated in Chapters 5 and 6. In conclusion to these chapters 
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we state that the main weakness or the major constraints of the 

modelling at the pan-African scale lies in the unavailability of a 

homogeneous data set on nitrate contamination, particularly the lack 

and uneven distribution of nitrate measurement points. Therefore, 

results from these analyses should not be over-interpreted. Whilst the 

data provide a useful preliminary assessment of the nitrate 

contamination in groundwater at the African scale, there are clear 

limitations. Unsurprisingly there are no consistent measurement 

datasets that can be explored at a continental scale; at larger scales, 

much of this information is also patchy, both spatially and temporally. 

Non-traditional data sources such as literature data (for example meta-

analysis) may, therefore, be useful substitutes for some traditional 

measurement data. The data used in this study is derived 

predominantly from literature. The data come from different sources 

(reviewed journal article, a book of articles, or other grey literature) 

and the methods (such as isotopic analysis) used to collect and produce 

the results of each study are not the same. They should therefore not 

be treated as traditional nitrate measurements. Certain studies in our 

dataset address specific groundwater nitrate contamination to water 

supplies, others address groundwater nitrate contamination to heavy 

irrigation areas, others couple the two issues (water supply and 

irrigation), and other studies address the nitrate pollution in mining 

zones, etc. The different natures of these studies constitute a possible 

bias. In spite of potential problems caused by possible sampling bias, 

the data set was used to explain the environmental/physical factors 

that contribute to nitrate pollution in groundwater at the African scale. 

Variables not found to be significant in the statistical modelling at the 

pan-African scale (such as soil) or not considered or available during 

model calibration (such as irrigation or denitrification/age) can affect 

nitrate leaching locally, so the map or the statistical model should not 

be used for local management decisions. 

A third and last limitation of this study was observed during validating 

of continental scale groundwater diffuse pollution model by using 
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regional datasets describes in Chapter 7. The discrepancy between a 

model applied exclusively to a meta-database of measurements of 

nitrate and nitrate contamination from different countries has already 

been identified as a major obstacle to the validation of the continental 

scale model at the regional scale. At this regard, Gubler et al. (2011) 

affirm that the problem of comparing model simulations made at one 

scale to measurements taken at another scale has no simple solution. 

Certain investigators such as Konikow and Bredehoeft (1992) and 

Oreskes et al. (1994) affirm that in environmental systems, complete 

validation of a model is a priori an impossible task. Also, the scale 

issues involved in the application of GeoPEARL at the regional scale 

were met by Leterme (2006) in his thesis research. It affirms that 

finding a framework for the evaluation (or validation) of leaching 

studies at the regional scale is indubitably a major challenge in 

hydrological science. Furthermore, Leterme (2006) mentioned that 

model validation is never totally achieved, but the validation status 

can be qualified via the model performance in different case studies 

(increasing confirmation; Beven, 1995). Thus, this problem of 

validation met in this study highlights the necessity of developing a 

national level political programme for characterisation of groundwater 

vulnerability by first constructing a good database of groundwater 

quality data and secondly building a robust predictive vulnerability 

model for each country. 

 

The original goal of this study was to formulate a method for mapping 

groundwater vulnerability to pollution at the pan-African scale. This 

goal has been fully met. Results derived from this research are a good 

start in supporting UN Sustainable Development Goals agenda for 

water quality. The present work has opened up much more potential 

for investigation than initially envisaged. The method employed in 

groundwater vulnerability to pollution at the African scale is not the 

most sophisticated in terms of the current state of the art in modelling 

groundwater vulnerability to pollution, but it is by no means invalid 
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and can hold their ground scientifically, because having proven 

effective elsewhere. However, in view of above remarks on limitations, 

some progress must be made toward again. In further pursuit of that 

research, several steps should make.  

 

The most important step is to link groundwater vulnerability model 

with uncertainty analysis and modify the theoretical framework of the 

method. Particularly the calibration of DRASTIC can be explored to 

better represent the weights. Loague and Corwin (1996) declare that 

the utility of relatively simple vulnerability maps, produced at the 

regional scales with geographic information system technology, is 

undermined by significant uncertainties related to model and data 

errors. To this regard, Honnungar (2009) investigated the limitations 

arise due to the spatial and temporal variability of input (data and 

resolution), data processing methods (sampling and interpolation 

methods), subjectivity in assigning weights and ratings by decision-

makers, and non-linear relationships between the hydrogeological 

parameters using MCDM such as DRASTIC model. Furthermore, 

Fortin (1998) gave an example of analysis of the propagation of spatial 

errors by integrating multisource data in DRASTIC groundwater 

vulnerability. Furthermore, Murat et al. (2004) studied a proposal to 

monitor uncertainty associated with spatial data processing for aquifer 

vulnerability mapping and GIS. However, the authors faced many 

problems and lost time trying to quantify propagation errors 

compared to efforts spent on running the DRASTIC model. Then they 

conclude that it is relatively simple to produce a specific map of 

groundwater vulnerability.  

 

In addition, another main challenge that undermine further 

development of this methodology is, the statistical modelling 

validation and difficulties in taking into account, the scale transitions 

error in the model. Furthermore, synergies between different spatial 

resolutions should also be explored. This research could involve 
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including best available GIS dataset from a local scale to improve the 

model’s performance at regional scale. Indeed, in assessing 

groundwater vulnerability, it will be interesting to work towards a 

bigger set of indicators to see which of the indicators not used can 

contribute to improving the final outcome. To this regard, there are 

other variables such as, age of groundwater, denitrification, GDP per 

capita, degree of sanitation, physical-chemical variables (pH, 

temperature, and electrical conductivity), distance from urban solid 

waste, distance from irrigation canals, etc., that had not been included 

in this initial research. These additional parameters can reveal other 

more important relationships in the assessment of groundwater 

vulnerability. This will open up exciting possibilities in groundwater 

pollution studies as new research challenges.  

 

For example, using maximum entropy modelling (Maxent), a machine 

learning method, to build environmental models for predicting and 

validating the potential global distribution of a problematic alien 

invasive species (the American bullfrog), Ficetola et al. (2007) 

concluded that integrating large-scale environmental layers with data 

collected at a more local scale, and combining climatic data with 

information on human activities, can greatly improve the prediction of 

invasion risk. Leterme (2006) affirms that a classical approach is to 

include other variables in the model validation. Therefore, better data 

availability of course, would help to make model predictions more 

accurate in the future.  

 

Due to simplification adopted to calculate recharge map in Chapter 8 

(see equation 3) to produce time dynamic groundwater pollution risk, 

a new groundwater recharge could be calculated using the WaterGAP 

Global Hydrology Model (WGHM) like in Döll and Fielder (2008).  

Then, we propose as another perspective is to the use of the approach 

developed by Li and Merchant (2013) in modelling framework that 

employs four sub-models, namely climate change scenarios, a land use 
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change (LUC) model, recharge and groundwater level models, and a 

modified DRASTIC model, linked within a GIS framework. For 

example, to illustrated how climate change can affect the physical and 

geochemical processes that that in turn affect groundwater quality in 

many ways, the author Li proposed in Fares (2016), a conceptual 

framework. It gives an overview of mechanisms through which 

climate variability and change could affect groundwater quality (See 

Figure 9-2). In addition, a future research could be undertaken to 

evaluate the effects of urban growth on groundwater quality in Africa 

by using the techniques of time-dependent methods developed by 

Stevenazzi et al. (2015). 

 

Another new research agenda may focus on the following area: the 

development of physically based models that can account for the key 

processes influencing nitrate fate and transport in groundwater and 

their interactions involving climate change. To this regard, Fares (2016) 

argues that process-based modeling methods account for physical 

processes of water movement and the associated fate and transport of 

contaminants in a quantitative manner, and hence can produce 

relatively accurate estimates of pollutant concentration. For example, 

in 2005, Sinkevich et al. implemented the Generalized Preferential 

Flow Transport Model (GPFM) to map areas with high risk of 

contamination by agrochemicals. Tiktak et al. (2006) used EuroPEARL, 

a one-dimensional, mechanistic pesticide leaching model, in a GIS to 

map pesticide leaching at the Pan-Europe scale. Furthermore, Almasi 

and Kaluarachchi (2007) employed a soil nitrogen dynamic model to 

estimate nitrate leaching to the aquifer and then used the MODFLOW 

and MT3D to simulate the fate and transport processes of nitrate in the 

groundwater system. The method developed by Almasi and 

Kaluarachchi (2007) is illustrated in Figure 9-3. Also, MODFLOW 

could be explored in the future to developed a new pan-African scale 

groundwater pollution map because de Graaf et al.(2015) presented a 

global-scale groundwater model (run at 60’ resolution) using 
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MODFLOW to construct an equilibrium water table at its natural state 

as the result of long-term climatic forcing. In addition to this new 

challenge, spatially distributed models could be explored at the 

African scale in the future, because Refsgaard et al. (1999) used 

spatially distributed simulation model to study large-scale modelling 

of groundwater contamination from nitrate leaching. For example, 

Pulido-Velazquez et al. (2015) coupled a watershed agriculturally 

based hydrological model (Soil and Water Assessment Tool, SWAT) 

with a groundwater flow model developed in MODFLOW, and with a 

nitrate mass-transport model in MT3DMS. 

 

Another approach recommended to improve the efficiency of 

groundwater vulnerability assessments is to compare Multicriteria 

decision making (MCDM) such as GOD groundwater vulnerability 

and the DRASTIC vulnerability index. In order to explore a new 

MCDM tool,  we suggest that land use or  human activities be split in 

various categories of different weights and rating: agricultural 

practices oriented on crop cultivation, on arable lands on cattle 

breeding,  on grassland production,  industrial activities (factories 

producing nitrate fertilizers and chemicals based on nitrate 

components), nitrate storage areas and waste disposal sites, 

unsewered urban areas,  open pit mining areas and deep mining areas 

(e.g. mining of saltpeter). In addition, tools such as isotopes analysis 

could be used to investigate groundwater pollution. 

 

The lack of the data is the major challenge, but this issue can be solved 

by promoting at a regional scale collaboration between countries and 

regional institutions in Africa. Notwithstanding this issue of data 

availability, we recommend as a perspective to use a scientific 

sampling procedure with standard procedures in the process of 

groundwater quality monitoring. To reduce human related errors, a 

qualified team and not the homeowners themselves should be in 

charge of the collection of data at the country level. .  
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In addition to these new challenges discussed above, new processing 

capacity (storage, speed, etc.) could improve the mapping capability. 

 

Although the development of a new tool for estimating groundwater 

vulnerability to pollution at the African scale is not really relevant or 

indispensable, it is of interest to finalize the methodology for the 

establishment of the DRASTIC index. This will help to integrate the 

uncertainty associate at large scale coarse data, evaluate the effects of 

scale, resolution, sampling and improve the validation step during the 

downscaling. Also, our modelling framework can be potentially 

adapted to model other types of substances or pollutants such as 

arsenic or electrical conductivity and could be applied in other regions. 

 

 

Figure 9-2: Pathways that climate change can affect groundwater quality (in Fares, 

2016) 
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Figure 9-3: Flowchart for modeling nitrate contamination in groundwater using 

physical models (from Almasri and Kaluarachchi 2007 in Fares, 2016) 
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Appendices 

Appendix A  

Maximum nitrate concentration analysis 

Normality of maximum nitrate 

Figure A-1 shows conventional and logarithmic histograms for the 

maximum nitrate concentration full data sets. We can observe that the 

log transformed maximum nitrate concentration is normally 

distributed. 
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Figure A-1: Histograms of maximum nitrate concentration and log transformed maximum nitrate concentration. 
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Correlation between explanatory variables and log transformed 

maximum nitrate concentration 

Except the box plot of land use parameter in Figure A-2, all the others 

box plots represent the environmental factors that influence the log 

transformed maximum nitrate concentration. 
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Figure A-2: Log transformed maximum nitrate concentration for different land use classes.  
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Figure A-3: Log transformed maximum nitrate concentration for different 

groundwater depth classes. 
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Figure A-4: Log transformed maximum nitrate concentration for different rainfall classes. 
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Figure A-5: Log transformed maximum nitrate concentration for different climate classes. 
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Figure A-6: Log transformed maximum nitrate concentration for different regions classes 
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Figure A-7: Log transformed maximum nitrate concentration for different soil classes. 
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Figure A-8: Log transformed maximum nitrate concentration for different slope 

classes 

 

Results of the maximum concentration modelling 

 

The same methodology used to develop the log transformed mean 

nitrate concentration predict model was used for the log transformed 

maximum nitrate concentration at the pan African scale. The log 

transformed maximum nitrate model had 6 factors in the final model 

which are significant: (1) depth to groundwater (shallow 

groundwater), (2) soil media, (3) topography, (4) rainfall, (5) climate 

class, and (6) regions type. The Akaike’s Information Criteria (AIC) for 

the best model is AIC =-1.75. Student statistic t values are used to check 

for statistical significance of variables categories in the final model. The 

regression coefficients of final model are presented in Table A-1. The 

model has a relatively good fitness and explains 42 % of the maximum 

nitrate occurrences at the pan Africa scale. The observed versus 
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predicted values displays a very low p-value of 1.581e-08 <0.001 

indicating that the model fit is acceptable (Figure A-9). The parameter 

coefficients provide an indication of the importance of the explanatory 

variable on the log transformed maximum nitrate concentration.  

 

Parameter coefficients in Table A-1 shed a light on predominant 

processes influencing maximum nitrate contamination of 

groundwater at the pan African scale. The sign of the coefficients 

indicate whether they proportionally increase or decrease the amount 

of nitrate delivered to groundwater. Shallow groundwater (0-7m) 

present a positive sign indicating that nitrate concentration increases 

while the great depth (100-250 m) has a negative sign. These two 

categories of depth are statistically significant in the model. 

 

In Table A-1, the silty clay loam/clay loam of soil media is the only 

category statistically significant and have a positive sign indicating 

that nitrate increases for this soil type. The others categories of soil type 

are not significant (p-value>0.05) and present the positive correlation 

except desert (sandy) category. This negative sign of desert sandy 

could be explained in fact, that in these areas (North Africa mainly), 

groundwater bodies are at great depths, thus reducing the nitrate 

pollution. 

 

Parameters coefficients for topography have for all categories positive 

signs. The category (2-4%) is statistically significant (p-value <0.1) 

According to Ouedraogo et al. (2016), a gentle slope (0-4%) is 

dominating the largest part of Africa. From this study, we can 

extrapolate and conclude that the low slopes contribute also at the 

groundwater pollution by nitrate at the pan African scale. 

 

The rainfall coefficients showed in table are negative signs. The rainfall 

corresponding at (1001-2000 mm/year) is the most statistically 

significant (p<0.05). The negative sign indicate that the rainfall 
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contribute to dilute the rate of nitrate in groundwater, thus decreasing 

the concentration. 

 

The climate class regression coefficients are all negative signs. Among 

the categories of climate class, three are statistically significant at p-

value <0.05, except the hyper-arid climate with a p-value > 0.05. The 

humid climate class is the most significant, reflecting the high risk to 

nitrate pollution in these zones. 

 

Parameter coefficients for region type have positive or negative signs 

depending on whether they promote the increase or decrease the 

amount of nitrate delivered to groundwater. Regions having positive 

signs include the Horn of Africa region, the Mediterranean region and 

Sahel region, while Southern equatorial central Africa region and 

Southern Africa region have negative signs (see Table A-1). The Sahel 

region and Southern Africa region are statistically significant at p<0.05. 

 

A probability plot of model residuals indicates that they follow a 

normal distribution (Figure A-10). Therefore, a transformation of the 

independent variables for regression was unnecessary. Figure A-11 

illustrated the residual analysis of the maximum nitrate concentration. 

The majority of observations are in the range of -2 to 2 with a few 

outliers. These outlier observations could influenced the results of 

model and limited the robustness. 
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   Tableau A-1: Optimal linear regression using logarithm maximum nitrate as 

independent variable. 

Coefficients:     

 Estimate Std. 

Error 

t-value Pr (>|t|) 

(Intercept) 3.89203 1.31110 2.969 0.00345 ** 

Depth [0-7] 0.81209 0.39525 2.055 0.04152 **   

Depth [7-25] 0.41959 0.42070 0.997 0.32008     

Depth [25-50] 0.11368 0.47776 0.238 0.81223     

Depth [50-100] 0.34814 0.41597 0.837 0.40386 

Depth [100-250] -1.72804 0.57873 -2.986 0.00327 ** 

Soil media [Desert(Sandy)] -0.07092 0.86606 -0.082 0.93483 

Soil media [Loam] 0.97788 0.77816 1.257 0.21068 

Soil media [Loamy Sand] 0.94832 0.79749 1.189 0.23613 

Soil media [Sandy loam] 0.78280 0.81088 0.965 0.33580 

Soil media [Silty clay 

loam/clay loam] 

1.41521 0.70290 2.013 0.04573 ** 

Soil media [Sandy 

clay/Sandy clay loam] 

0.79318 0.68114 1.164 0.24594 

Topography [0-2] 1.22962 0.76397    1.610 0.10945 

Topography [2-4] 1.29656 0.77731 1.668 0.09724* 

Topography [4-8] 0.90060 0.78908 1.141 0.25542 

Topography [8-12] 0.83524 0.85754 0.974 0.33151 

Topography [12-18] 0.57584 0.89963 0.640 0.52302     

Rainfall [101-200] -1.28433 0.67780 -1.895 0.05989* 

Rainfall [201-400] -1.30949 0.71233 -1.838 0.06785* 

Rainfall [401-600] -0.95014 0.72779 -1.306 0.19357 

Rainfall [601-1000] -1.30688 0.75678 -1.727 0.08609* 

Rainfall [1001-2000] -1.81435 0.71197 -2.548 0.01175** 

Rainfall [2001-3000] -1.36421 -1.36421 -1.629 0.10516 

Climate class [Humid] -1.39950 0.30886   -4.531 1.13e-05 *** 

Climate class [Dry sub-

Humid] 

  -0.90813 0.34871 -2.604 0.01006** 

Climate class [Semi-arid] -0.76395 0.29024 -2.632 0.00931 ** 

Climate class [Hyper Arid] -0.28891 0.49427 -0.585 0.55968 

Mediterranean region 0.34746 0.38715 0.897 0.37080 

Sahel region 1.15109 0.38408 2.997 0.00316 ** 

Horn of Africa region 1.72708 1.45046 1.191 0.23551 

Southern Eq. central Africa 

region 

-0.43528 0.38600 -1.128 0.26113 

Southern Africa region -0.90444 0.39805 -2.272 0.02439 ** 

Residual standard error: 1.224   on 162 degrees of freedom 

Multiple R-squared: 0.42    

F-statistic: 3.788   on 31 and 162 DF, p-value=1.581e-08 < 0.001 

Note: Statistical significance: ***p<0.001; **p<0.05; and *p<0.1. 
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Figure A-9: Observed versus predicted log transformed maximum nitrate 

concentration (R2=0.42). 
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Figure A-10: Normal probability distribution of model residuals for log transformed 

maximum nitrate concentration. 
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Figure A-11: Relation between residuals and predicted log transformed maximum 

nitrate concentration. 
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Appendix B 

Minimum nitrate concentration analysis 

Normality of minimum nitrate 

Figure B-1 shows conventional and logarithmic histograms for the 

minimum nitrate concentration. Despite the log transformation, a non-

normal distribution is observed. This may be due to many outliers in 

these dataset. 
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Figure B-1: Histograms of the original and log transformed minimum nitrate concentration 
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Correlation between explanatory variables and log transformed 

minimum nitrate concentration 

Except the box plot of land use parameter in Figure B-2, all the others 

box plot diagrams represent the environmental factors that influence 

mainly the rate of  minimum nitrate concentration and are illustrated 

in Figure B-3 to  Figure B-7.
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Figure B-2: Log transformed minimum nitrate concentration for different land use classes
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Figure B-3: Log transformed minimum nitrate concentration for different aquifer system classes
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Figure B-4: Log transformed minimum nitrate concentration for different climate classes
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Figure B-5: Log transformed minimum nitrate concentration for different slope 

classes



 

418 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-6: Log transformed minimum nitrate concentration for different hydraulic conductivity classes 
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Figure B-7: Log transformed minimum nitrate concentration for different soil classes 
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Appendix C 
Framework of questions for thesis 

Overall goal: 

Develop knowledge on the state of groundwater at the pan African scale, supporting the monitoring of the implementation of the UN Sustainable 

Development Goals agenda. 

Knowledge gap  Research Question 

Knowledge 

Gap 1 

Groundwater vulnerability to pollution at 

the pan-African scale is not known.  

Research 

Question 1 

How can we map, with a high spatial resolution, the 

possible pressures on groundwater at the pan-African 

scale? 

Knowledge 

Gap 2 

Groundwater pollution at the pan African 

scale is not assessed. 
 

Research 

Question 2 

How can we use the power of meta-analysis, to build, 

through the published literature a pan-African meta-

database of groundwater pollution for nitrates as a proxy 

of general pollution? 

Knowledge 

Gap 3 

Environmental drivers contributing to 

groundwater pollution risk  at the 

continental scale are not quantified. 

 

Research 

Question 3 

How can we use a meta-database to develop statistical 

models which allow explaining the origin of nitrate 

pollution with environmental factors? 

Knowledge 

Gap 4 

Groundwater pollution risk at the pan 

African scale has not been modelled. 
 

Research 

Question 4 

How valid are the statistical models for predicting nitrate 

pollution in African groundwater? 

Knowledge 

Gap 5 

Monitoring of groundwater pollution at 

the pan African scale is not operational  

Research 

Question 5 

How can we integrate time dimension in the statistical 

models to predict time course of groundwater pollution 

risk at the pan African scale? 
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