Unlocking Climate Finance to Accelerate Energy Access in Africa

Prepared by

Backup genset research produced in association with

Inputs from a Technical Working Group, comprised of representatives from

Backup genset research was based on previous work commissioned by

Finance Corporation

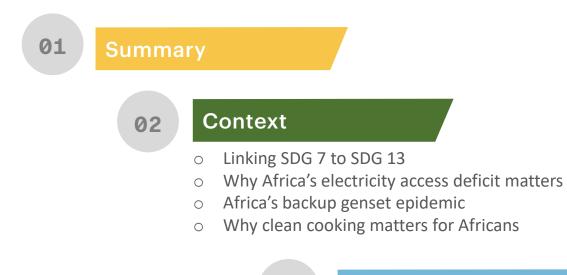
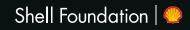

The Report is endorsed by key DRE industry associations

Table of Contents

03

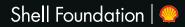

Pillars of SDG 7

- Pillar 1: Electricity Access
- Pillar 2: Greening Back-up Gensets

04

• Pillar 3: Improved Cooking

Call to Action

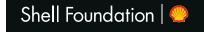


3

CATALYST

Summary

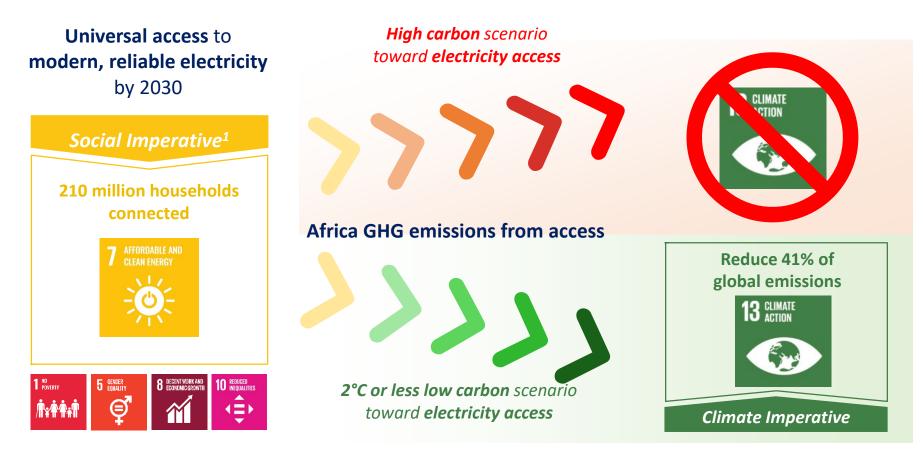
This research demonstrates the business opportunity to unlock billions in climate finance and deliver on multiple SDG goals

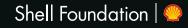


- Our <u>2018 research</u> demonstrated the financing opportunity to achieve universal household electrification in Africa (SDG 7) via off-grid solutions
- This research will show off-grid solar's social dividends, which cut across numerous SDGs¹
- Alongside the climate dividends attributable to lowcarbon SDG 7 scenarios
- It forecasts the climate finance opportunity associated with these low-carbon SDG 7 scenarios

•

• **Illustrating the multi-billion-dollar** climate finance opportunity associated with the low-carbon scenarios





LYST

Research focus: predictive modeling illustrates Africa's lowcarbon SDG 7 scenarios and the impact they will have on SDG 13

- SDG 7: Ensure access to affordable, reliable, sustainable and modern energy for all
- SDG 13: Take urgent action to combat climate change and its impacts

Africa's key energy trends and their climate impacts illustrate the scope of the SDG 7 and SDG 13 challenges

>>

>>

>>

Electricity access

70% of African
households are
unelectrified, meaning
200M need to be
connected to reach SDG 7

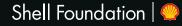
Africa is falling behind the rest of the world on electricity access, hosting **69%** of the world's unelectrified households

On top of that, Africa remains heavily dependent on fossil fuels, which

accounts for **68%** of electricity generation

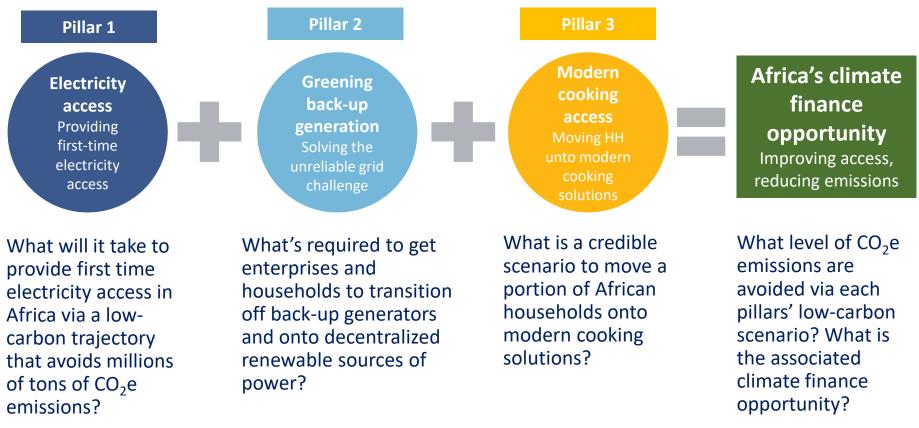
Two-thirds of African grids are considered unreliable, with enterprises experiencing an average of 10% downtime, and 8% revenue losses

As a consequence, there are **7 million** backup gensets deployed on the continent, equivalent to **120** coal power stations


These gensets consume US\$13 billion/year of fossil fuels

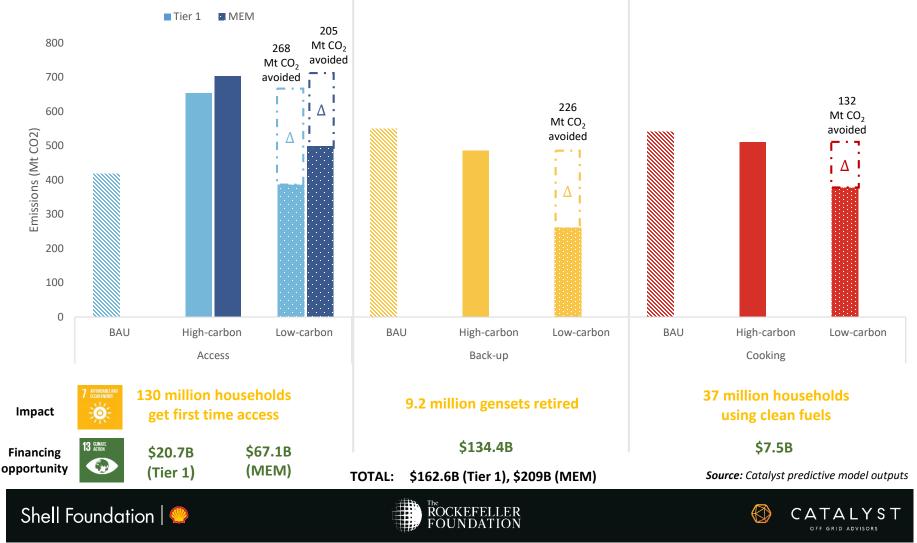
82% of Africa's population
 (890 million people) use solid fuels for primary cooking needs

600,000 Africans are killed annually from household air pollution, making it the 2nd largest health risk on the continent


600 Mt CO₂ comes from solid cooking in Africa alone

Low-carbon scenarios accelerate Africa's achievement of SDG 7 and SDG 13 via 3 pillars

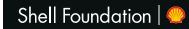
Predictive modeling forecasts three scenarios for each thematic pillar: business-as-usual, high-carbon, and low-carbon, shows the avoided emissions between the latter two, and then provides the investment costs associated with the low-carbon scenario



8

()

These scenarios avoid 563-626 million tons of CO_2 , deliver significant SDG 7 impacts, and unlock a substantial climate finance opportunity


Emissions from plausible low-carbon scenarios are benchmarked against equally plausible high-carbon counterfactuals; the difference between the two constitutes the avoided emissions

¹ The Tier 1 scenario sees expansion of all access technologies (grid, mini-grid, and OGS of various sizes) but the majority of low- and lower-middle income households get access via Tier 1 OGS technologies. The Modern Energy Minimum (MEM) scenario targets per capita annual consumption of 130 kWh by 2030 and thus more households need mini-grid connections and Tier 2 and 3 OGS systems as a result.

Summarizing each pillar's social and climate impacts, and the associated climate finance needs of each low-carbon scenario

	BAU ¹ @ 2030	impact	technology mix	avoided emissions	financing opportunity
Pillar 1: Electricity					
Tier 1	 69% household (HH) access rate 	 100% HH access 186 million new HH connections 	 43% Off-grid 2% Mini-grid 55% Grid 	268.1 Mt CO ₂	\$20.7 billion
MEM			 35% Off-grid 10% Mini-grid 55% Grid 	205 Mt CO ₂	\$67.1 billion
Pillar 2: Greening					
Back-up gensets	 Gensets that reach end-life are replaced w/fossil-gensets 	 9.2 million back- up gensets displaced w/ DRE 	 Each year, 50% of end-life gensets replaced w/DREs 	226.4 Mt CO ₂	\$134.4 billion
Pillar 3: Improved					
Clean Cooking	 39 million HHs continue to cook with charcoal 	39 million HHs transition to cook with modern fuels	 60% LPG 22% electricity 11% ethanol 7% pellets 	131.7 Mt CO ₂	\$7.5 billion

CATALYST

Source: Catalyst predictive model outputs

¹ "Business-as-usual" (BAU) illustrates historical trends extrapolated forward to 2030

Africa's low-carbon access scenarios: huge impact, significant avoided CO₂ emissions, large climate finance opportunity

A low-carbon scenario contributes massively toward universal access and improved cooking

132 million

new connections from off-grid technologies delivered

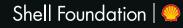
9.2 million

gensets used by enterprises and households displaced

39 million

new households would cook with modern fuels

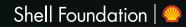
A low-carbon scenario benchmarked against a high-carbon scenario yields


Up to 626 million

tons of **avoided CO₂e emissions** over the next decade, approximately equivalent to the annual emissions of 160 coal-fired power plants

A **low-carbon scenario** requires substantial volumes of **new capital**

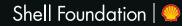
US\$200+ billion climate finance opportunity



And creates an imperative to rally climate-first investors who can mobilize commercial and concessional capital to deliver on SDG7

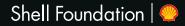
Climate finance must be mobilized at scale to support energy access; several types of institutions need to be brought to the table to change this

Publi	c Organizations	Private Organizations			
Bilateral DFIs	Single country owns institution and directs finance flows	Corporations	Project developers and corporate actors		
Multilateral Regional DFIs	Multiple shareholder countries and directs finance flows	Family Offices	Philanthropic and/or commercial financing		
Climate Funds	National or multinational climate funds	Private Equity / VC	Entities that invest in private companies, or that engage in buyouts of public companies		
		Investment Banks / Institutional Investors	Company or organization that invests money on behalf of others or providers of debt and equity		



Three calls to action to climate-first investors to help catalyze the SDG7-climate finance nexus

Support new, innovative 🦳 Help define the next wave **Finance existing energy** of investment opportunities mechanisms access enterprises \$200+ **Billion Climate Finance** Catalysed via existing vehicles (e.g. to monetize social & that leverage the co-**CrossBoundary Energy** environmental impact of benefits of the SDG7-**Access Facility, Energy** DRE enterprises, such as SDG13 nexus & roll out **Universal Electricity Access Ventures, Facility** new solutions to unlock for Energy Inclusion) to **Facility, Distributed** climate funding for the quickly scale impact and **Renewable Energy DRE sector.** get Africa on the low-**Certificates**, and **Digital**


carbon SDG7 trajectory.

Carbon Credits.

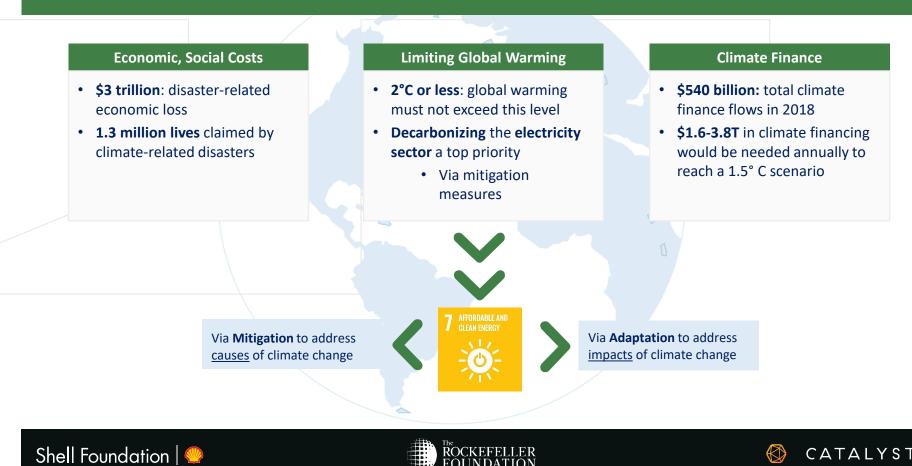
Linking SDG7 to SDG 13

*"Light is a human right"*¹: electrification is a crucial social imperative

Yet, 789 million people still lack access to modern electricity in the world

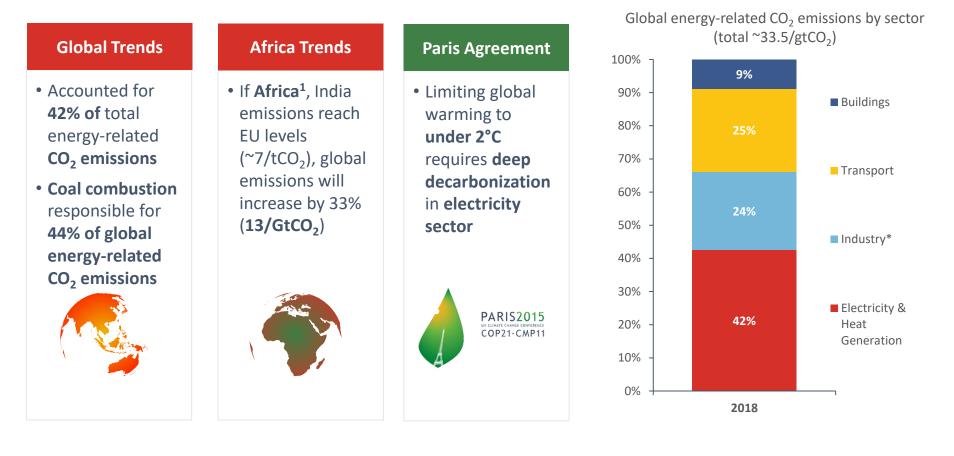
and SDG 7 is integrally linked other global social imperatives

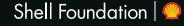
¹ Leonel Zinsou, former Prime Minister of Benin, announcing the country's Light for All campaign; United Nations Sustainable Development Goals. Connecting the sustainable development goals by their energy inter-linkages, David L McCollum et al 2018 Environ. Res. Lett.


CATALYST

At the same time, combatting climate change is a top global priority

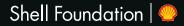
SUSTAINABLE DEVELOPMENT GOAL 13

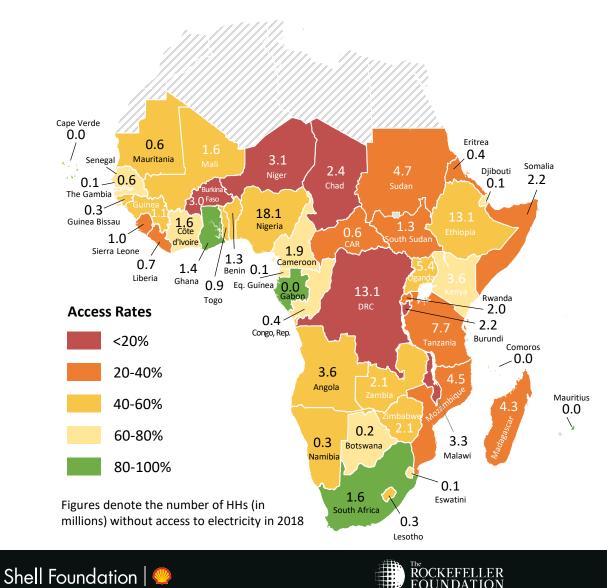

Take urgent action to combat climate change and its impacts*



Electricity consumption is a significant contributor to global CO_2 emissions, which leads to the energy-climate nexus

2018 GHG emissions related to electricity and heat




Why Africa's electricity access deficit matters

Africa' faces a massive electricity access deficit

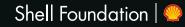
~70 percent of households that are unelectrified are found in sub-Saharan Africa

~110 million African households lack access to modern electricity services in 2020

200 million

households will need to be connected by 2030 to meet SDG 7 given current demographic trends

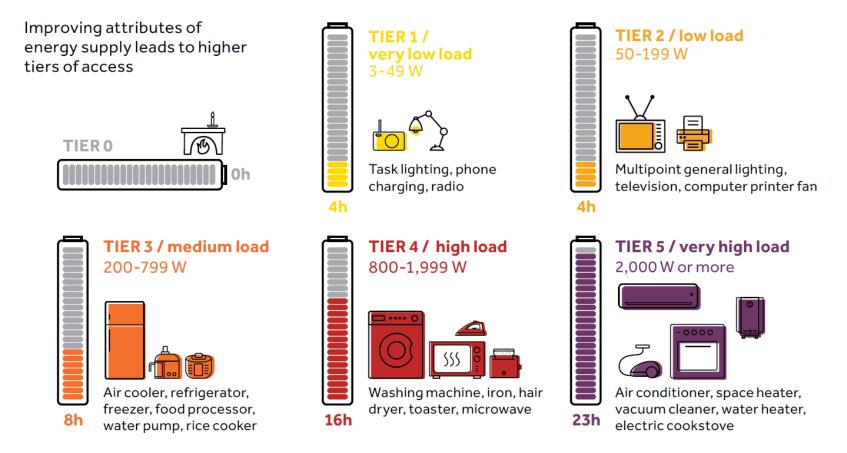
CATALYST

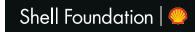


These 110 million unelectrified households make do with stopgap solutions for basic lighting

		Fires	Health (smoke, fumes)	Environ. Impact	Cost	Lighting quality
Vood					\bigcirc	\bigcirc
andles	Ì					
erosene						
attery operated ashlights	A N ¹	\bigcirc	\bigcirc			
obile phone Ishlights		\bigcirc	\bigcirc	\bigcirc		
ow quality solar nterns		\bigcirc	\bigcirc			
			High	Low		

ap solutions r **poor** ing, re often gerous xpensive


CATALYST



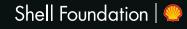
"Access" is no longer binary (whether a consumer is connected to an electricity grid): now based on "tiered" levels of service

Multi-Tier Framework (MTF) definition: "the ability to avail energy that is adequate, available when needed, reliable, of good quality, convenient, affordable, legal, healthy and safe for all required energy services"

Source: Adapted from the MTF, World Bank 2019.

Tiered levels of service delivered via varying technologies, with many stakeholders considering Tier 1 as a minimum threshold

	Tier Level	Electricity Source	GHG Impact	Upfront Cost*	O&M Cost
Quality-verified solar lantern	1 for <hh< th=""><th>Solar PV</th><th>\bigcirc</th><th></th><th>\bigcirc</th></hh<>	Solar PV	\bigcirc		\bigcirc
Small solar home system (SHS)	1	Solar PV	\bigcirc		
Medium SHS	2	Solar PV			
Large SHS	3	Solar PV			
Mini-Grid	2-4	Varies			
Grid	5	Varies			
) High 🔿 Lo)W


Standalone, minigrid & grid provide connectivity

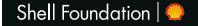
Scalable solutions, grow with household needs and ability to pay

Not all solutions are created equal when it comes to climate impact

 \bigcirc


CATALYST

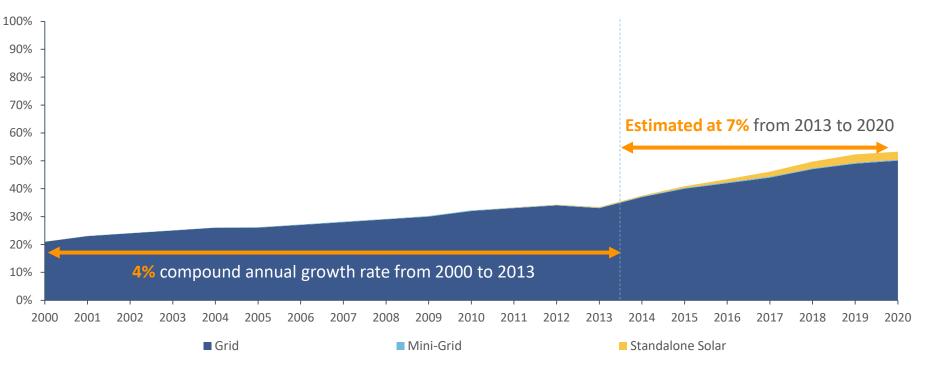
Context

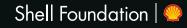

More recent efforts have advocated for a more ambitious level of service, known as the "Modern Energy Minimum"

- No high-income country is low energy. Data shows a correlation between income and energy consumption at country level
- High-income countries have annual electricity consumption above 3,000 kWh per capita
- One common threshold for "energy access" is modest, roughly equivalent to 50 kWh per capita in rural areas, and correlated with incomes of \$0.27 per day

The Modern Energy Minimum (MEM) sets a target of 1,000 kWh per capita per year

- Divided between 300kWh of household + 700kWh of non-HH electricity consumption
- Correlates with an income of \$6.85 per day

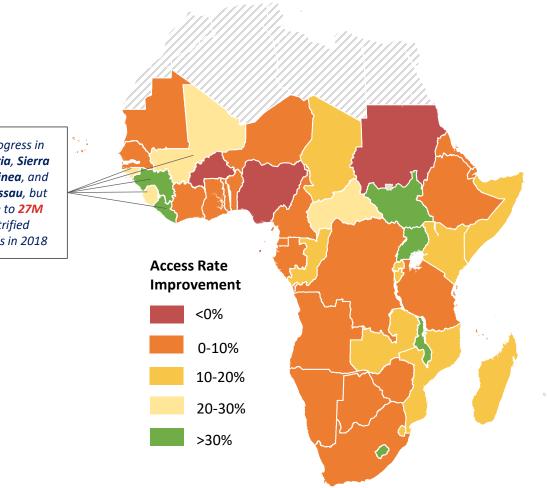



Context

Meanwhile, Africa's electrification trends show some promising progress toward SDG 7

- Recent grid connection improvements tied to grid densification
- Significant contribution from standalone solar, particularly in East Africa
- Despite these trends, business-as-usual yields a significant SDG 7 shortfall

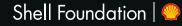
African Household Electricity Access by Type



Though this progress is very uneven across countries

Sub-Saharan Africa Household Electricity Access (2018 vs. 2016)

Strong progress in Mali, Liberia, Sierra Leone, Guinea, and Guinea-Bissau, but still home to 27M unelectrified households in 2018

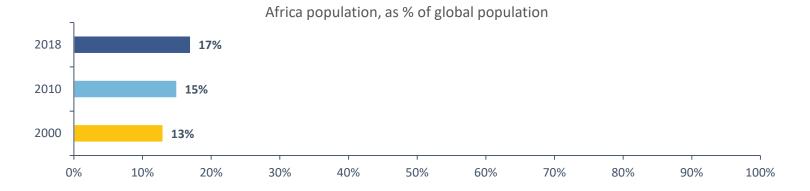

46 percent median access rate for Sub-Saharan African countries in 2016

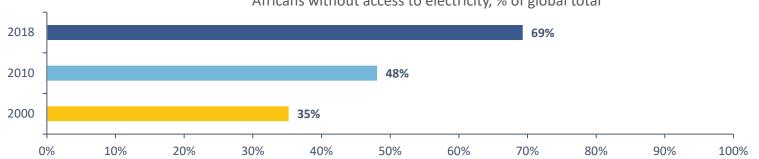
8 countries

have population growth that is outpacing the rate of new connections

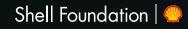
8 countries

have access in excess of **75%**, of which only 4 are not small, island nations

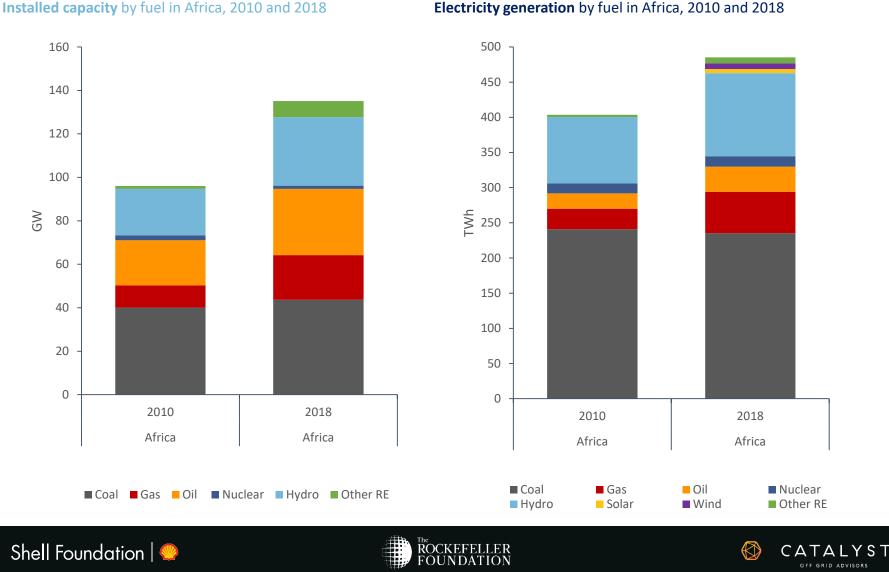




And Africa is falling behind rest of world on electricity access

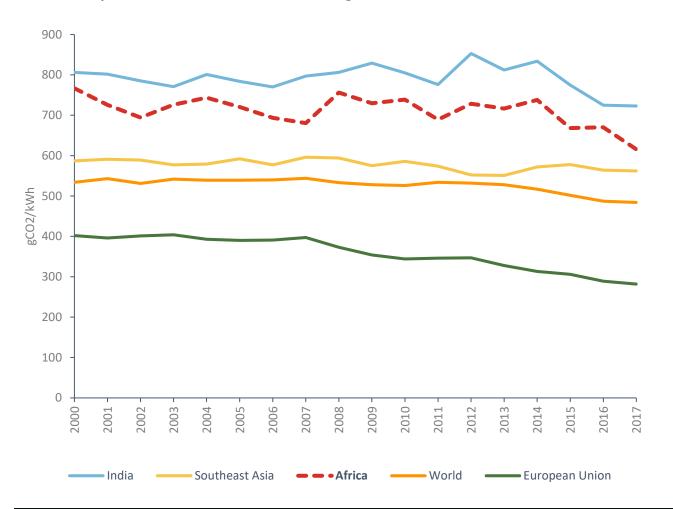

Africa's share of the global population has seen modest growth since 2000

Yet it now hosts 69% of the world's unelectrified households


Africans without access to electricity, % of global total

CATALYST

Africa's power grids remain heavily dependent on fossil fuel-based power

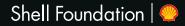


Electricity generation by fuel in Africa, 2010 and 2018

Source: Authors' estimations based on the IEA's 2019 World Energy Outlook and Africa Energy Outlook

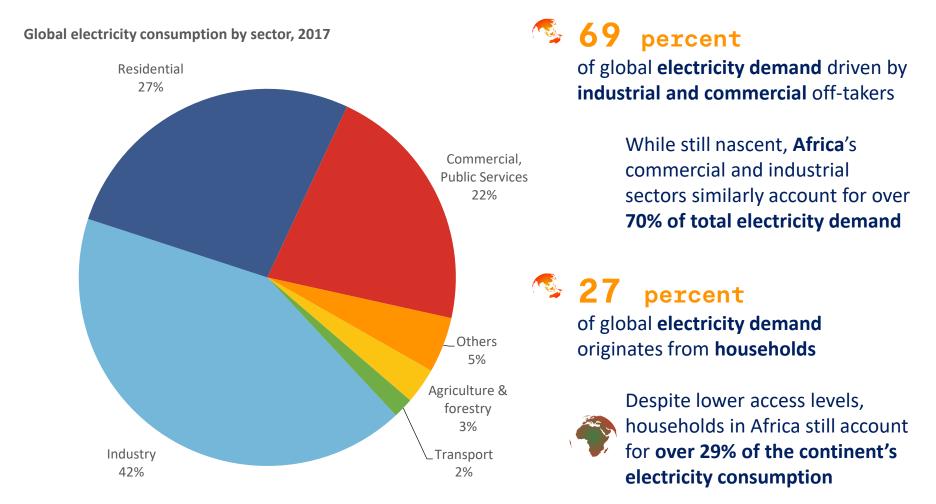
And Africa's historical grid GHG emission trends have mirrored other parts of the world

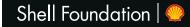
GHG Intensity of Power Generation in Selected Regions



- Progress has been inconsistent in Africa, as seen by lumpy lines
- **Africa emissions** intensity remains relatively high compared to the rest of world
- Future trajectory depends heavily on Africa's generation mix and the extent to which it draws upon indigenous renewable resources (e.g. hydro, solar, wind)

Shell Foundation


Africa's backup genset epidemic: high-cost power with a big climate impact

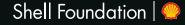


More so than households, enterprises are the major driver of electricity demand globally and in Africa

Source: International Energy Agency – Electricity Statistics - Electricity Information 2019 Overview (publicly available)

Unreliable grid connections lead to massive use of fossil fuel-powered gensets, particularly by enterprises

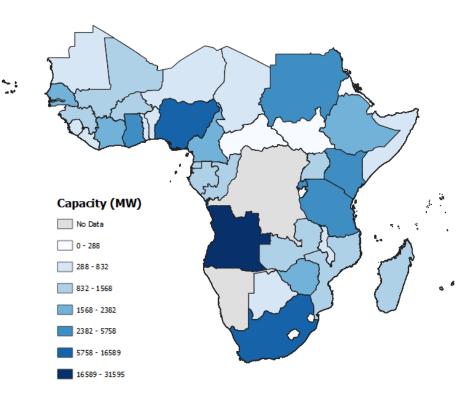
As utilities struggle to keep up with growing electricity demand, grid reliability will likely worsen, exacerbating dependency on expensive, polluting backup generators

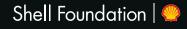

Unreliable grid connections

- In **developing countries**, unreliable grids are the primary driver for genset use:
 - ~75 percent of sites using fossil-fuel powered gensets are "grid connected"
- In Africa alone:
 - 36 countries are considered to have unreliable grids¹
 - Enterprises experience an average of 9 outages per month, lasting a total of 81 hours (e.g.,> 10% downtime)
 - Unreliable grid connections result in an average 8 percent loss in business revenues

Use of backup generators

- Backup fossil-fueled generators are used by households and enterprises
- **Powered** with **fossil fuels**, typically diesel or gasoline
 - Significant source of air pollutants
- Off-grid enterprises often resort to using gensets for power, particularly for productive use applications
- Some off-grid households use them as well, though fuel costs make them unaffordable for most

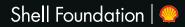

These gensets deliver power, but at a huge economic and climate cost


~ **7** million

estimated number of backup genset sites in Sub-Saharan Africa today, equivalent to **120 coal-fired power** stations

~US\$13 billion
spent in Sub-Saharan Africa by backup
genset users each year on fuel

20 percent of gasoline & diesel consumed in Africa is a result of backup genset use, equivalent to 15-20 percent of spending on education & healthcare Installed capacity of back-up generators in Africa, 2016



Source: The Dirty Footprint of the Broken Grid, IFC and Schatz Energy Research Center at Humboldt State University, 2019

Clean cooking: what it is and why it matters for climate change and energy access

Why clean cooking solutions matter

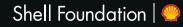
Four billion people - half of the world's population - depend on polluting solid fuels, open fires or inefficient stoves to cook their food¹

The annual costs are striking:

>4 million premature deaths

1.4 billion

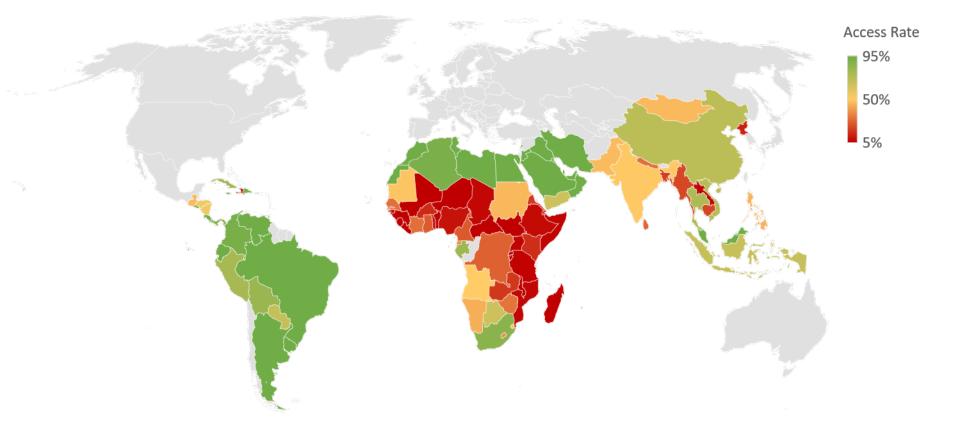
tons of **wood fuel** consumed, much of it **unsustainably**

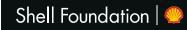

US\$38 - US\$40 billion

spent on solid fuels for cooking

140 million

productive person-years wasted on biomass collection

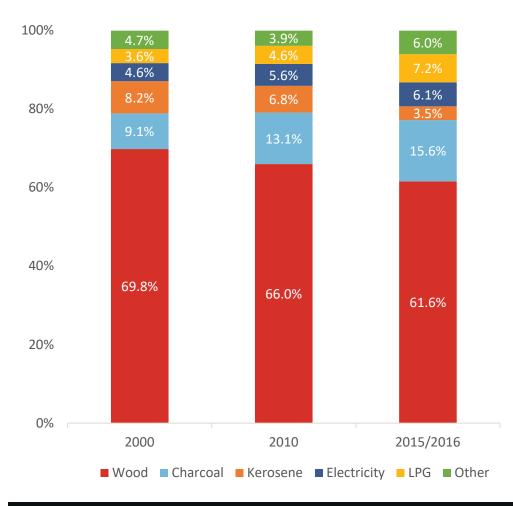




Africa is the epicenter of the cooking crisis

Population growth in Africa is **outpacing** annual growth in **clean cooking access** across the continent; between 2010-2018, the number of people without access rose from 750 million to 890 million

Percentage of population with access to clean cooking by country, 2018



Africa's high solid fuel use costs lives and the climate

Africa primary household cooking fuel use by type, 2000, 2010, and 2015/16¹

850 million+

Africans, or 80% of the continent's population, use solid fuels for primary cooking needs

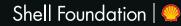
600 thousand

Africans killed annually from household air **pollution**, making it the 2nd largest health risk in the region

600 Mt CO₂ of global GHG emissions comes from solid fuel cooking in Africa alone

 \bigcirc

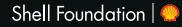
CATALYST


Shell Foundation | 🥮

Solving the cooking challenge requires a shift to modern fuels

Making the shift must overcome significant barriers, including willingness and ability to pay, building fuel supply chains, and behavior change relative to traditional cooking approaches

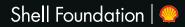
	Traditional fuels				Modern fuels			
	Stopgap	cooking	Improved Cooking		Modern Fuel		Renewable Fuel	
Change Trans	"3-stone"		Improved artisanal		"Standalone" stove		"Standalone" stove	
Stove Type	Unimproved artisanal		Industrial		"Grid-tied"		"Grid-tied"	
	Wood		Wood	Coal	LPG		Electric*	Pellets
Fuels	Charcoal		Charcoal	Kerosene	Natural gas		Biogas	Ethanol
	Coal						Solar	
Example	Traditional Metal Stove	Chitetezo Mbaula	Burn jikokoa	Envirofit G- 3300	LPG Stove Télia n°2	LPG/NG 2B SS gas stove	Mimi moto	SAFI Cooker
Image					F			- Contraction
Fuel Type	Charcoal	Wood	Charcoal	Wood	LPG	Natural gas/LPG	Pellets	Ethanol
Efficiency	23%	20%	44%	34%	49%	N/A	47%	64%
GHG Emissions	Very high	High	Medium	Medium	Low	Low	Very low	Very low


Source: Clean Cooking Alliance's 'Clean Cooking Catalog'; authors' analysis. *Renewability of electricity depends on country generation mix.

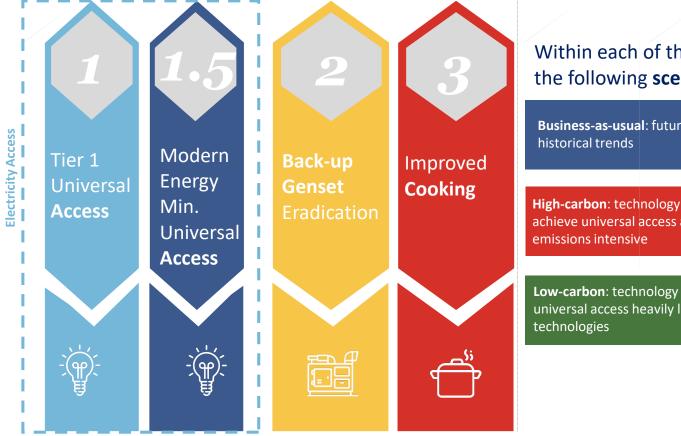
Africa's choice of modern cooking transition depends on the emissions intensity of fuel sources

- In Africa, electric stoves have higher emissions than other fuel/stove combinations due to the fossil fuel-heavy grid generation mix
- The most GHG emissions-friendly solutions involve lower-carbon fuels paired with highly-efficient stoves

Fuel Type	Fuel Type Fuel emissions intensity		Stove Efficiency		Stove and fuel emissions intensity		
		kgCO2e/GJ		%		kgCO2e/GJ	
Traditional stove	Charcoal		100		23%		434
Traditional stove	Wood		67		20%		337
Basic ICS	Charcoal		103		30%		343
Basic ICS	Wood		61		25%		249
Industrial ICS	Charcoal		103		41%		253
Industrial ICS	Wood		61		34%		181
Std. Kerosene	Kerosene		89		45%		198
Std. LPG	LPG		75		49%		153
Industrial Ethanol	Ethanol		24		64%		38
Industrial Pellet	Pellets		19		47%		41
Std. Electric	Electric		169		75%		226
Induction Electric	Electric		169		85%		199


*Each fuel has a GHG emissions intensity factor (kgCO₂e per gigajoule of fuel burned) which illustrates the carbon-intensity of the fuel when burned. When used in a particular stove, only a percentage of the burned fuel is converted into useful energy, resulting in a higher GHG emissions intensity in practice.

Africa's energy access pillars and climate finance opportunities



Previewing the thematic pillars and climate scenarios

Our analysis is based on separate pillars, focused on:

Within each of these **pillars**, we generate the following scenarios:

Business-as-usual: future trajectory based on

High-carbon: technology deployed to achieve universal access are relatively

Low-carbon: technology deployed to achieve universal access heavily leverage low-carbon

Lowcarbon

HC

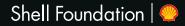
High-

carbon

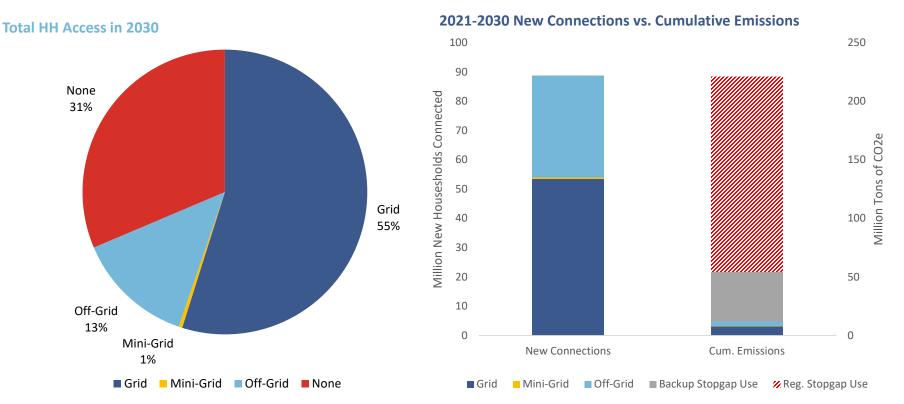
BAU

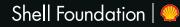
Business-as-

usual


Each model allows benchmarking of scenarios to estimate avoided CO₂ emissions

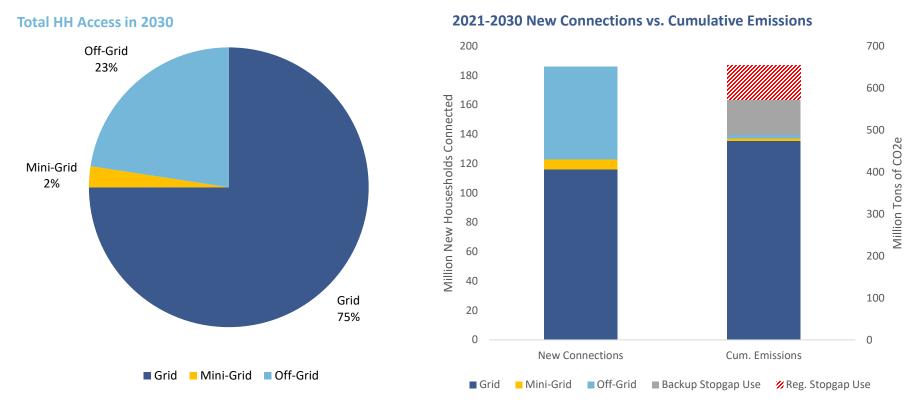
Pillar 1: universal household electricity access by 2030


Pillar 1- Tier 1 Threshold



Business-As-Usual (BAU): model shows only 69% of HHs would have access in 2030¹; significant stopgap emissions footprint

- Reflects expected access situation through 2030 if current trends in grid, mini-grid, and standalone solar access continue
- About 89 million households will gain access; a somewhat larger number will remain unserved
- Cumulative emissions of 418 MtCO₂e, of which 50 percent from continued stopgap use



¹ Projections through 2030 based on recent historical trends in grid expansion, mini-grid construction, and OGS sales. All scenarios assume UN-DESA's medium population growth scenario and average household sizes shrinking in line with historical averages. Backup stopgap use refers to emissions from the ongoing use of stopgap solutions by HHs with electricity access; reg. stopgap use refers to stopgap emissions from unelectrified HHs

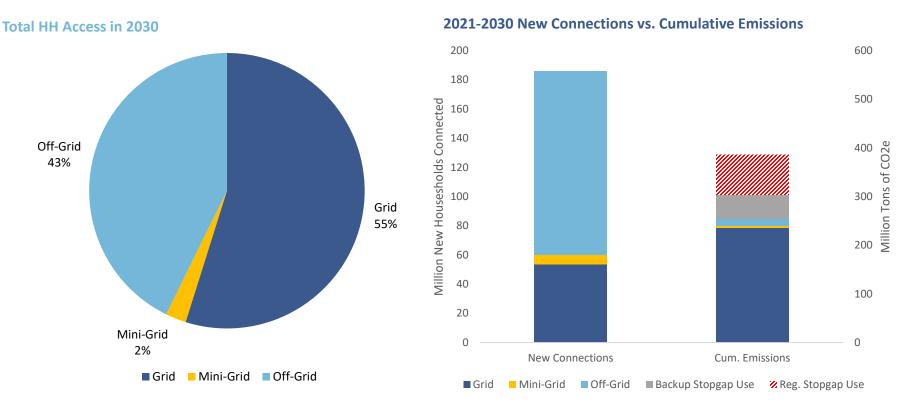

Pillar 1: HH access

Scenario: high-carbon

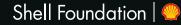
Tier 1 high-carbon scenario: universal access, with a 53% increase in CO_2e emissions compared to BAU

- Universal access achieved by 2030 through a higher-carbon scenario whereby the grid plays a large role, and associated emissions intensity rises to levels similar to India today
- Mini-grids and standalone solar also figure prominently, but the former continue to use fair amounts of **diesel**
- Cumulative emissions of 654 MtCO₂e, including an over 40 MtCO₂e reduction in stopgap emissions vs BAU

¹ Grid emissions intensity in the high-carbon scenario increases by 1.5% annually to nearly 800 kgCO₂e/MWh when factoring in T&D losses. New mini-grids maintain approximately the same generation breakdown as the existing stock in Africa (50% diesel; 20% diesel-RE; 30% RE). Reduction in stopgap emissions is limited given the large number of new grid users who will continue using stopgap solutions to deal with poor grid reliability.


 (\mathbb{Z})

CATALYST

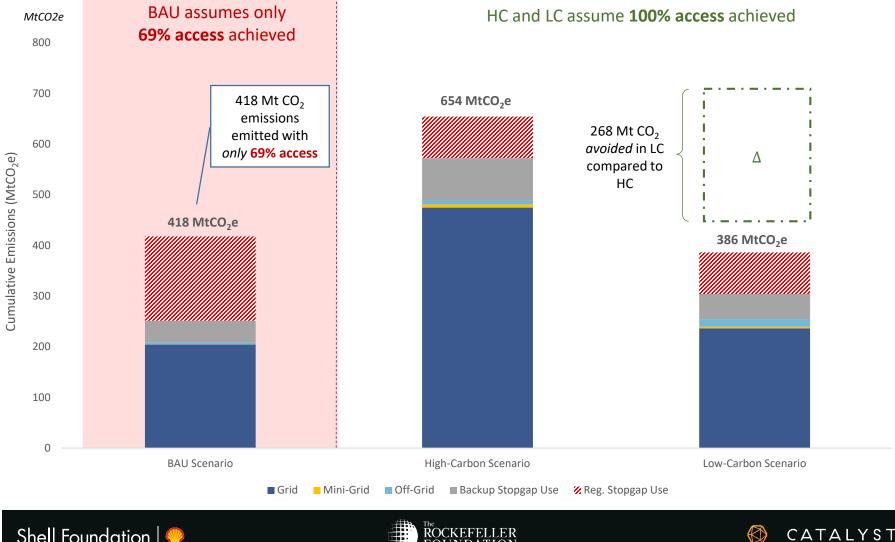

Pillar 1: HH access

Scenario: low carbon

Tier 1 low-carbon scenario: universal access, smaller carbon footprint than BAU

- Standalone solar, green mini-grid solutions account for majority of new household connections through 2030
- Lower dependency on grid generation; emissions intensity decreases in line with historical trends;
- Limited GHG footprint of off-grid technologies means that emissions impacts relative to BAU are rather limited
- Cumulative emissions of 386 MtCO₂e, including an estimated 77 MtCO₂e avoided stopgap emissions vs BAU

¹ Grid emissions intensity in the low-carbon scenario decreases slightly to just over 650 kgCO₃e/MWh when factoring in T&D losses. The share of RE-only mini-grids increases considerably to 80% by 2030. The reduction in stopgap emissions is more significant than the high-carbon scenario as fewer households gain access through an unreliable grid.

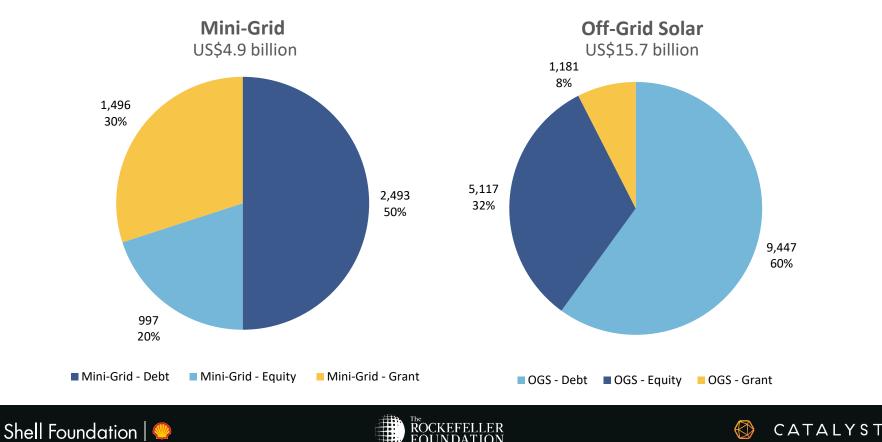

 \mathbb{R}

CATALYST

Pillar 1: HH access

Emissions impact of universal access scenarios vary widely: low-carbon scenario has net avoided emissions of 268 Mt CO_2e

Comparison of 2021-2030 Cum. CO₂e Emissions

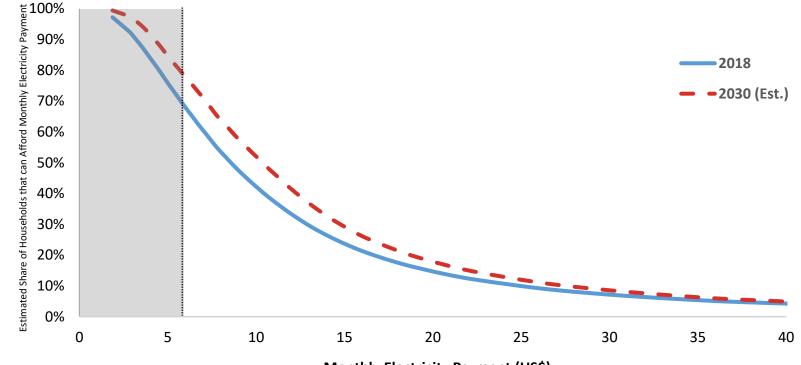

¹ The low-carbon scenario has lower estimated emissions than the BAU scenario since emissions from electrification activities are more than offset by reductions in stopgap emissions (particularly from kerosene and candles)

46

Pillar 1: HH access / Scenario: low carbon

Tier 1 low-carbon electrification scenario yields a US\$20.7 billion climate finance opportunity

- Off-grid solar financing need of US\$15.7 billion, yielding first time access for 125.7 million households
- Mini-grid financing of US\$4.9 billion required, delivering access to 6.8 million households



Base Demand: Off-Grid Solar & Mini-Grid Capital Needs, 2021-2030

¹Quantum and blend of financing needs are based on the historical needs of mini-grid developers and OGS distributors as well as the authors' expectations about the evolution of system costs through 2030. Financing amounts do not include additional end-user subsidies that would be required to ensure Tier 1 OGS systems or mini-grid electricity is affordable for all households by 2030.

US\$2.5 billion required in consumer subsidies to achieve universal access under low-carbon scenario

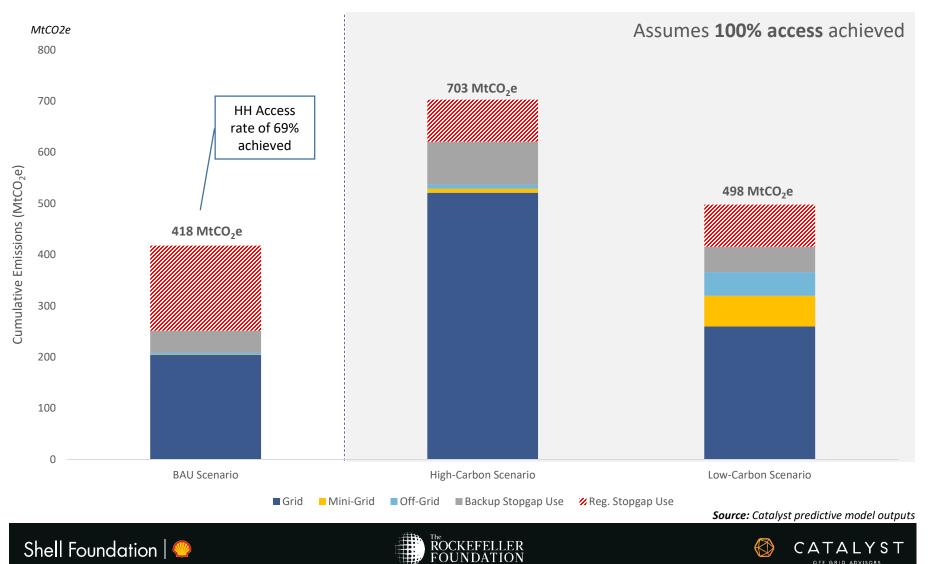
- 42 million households that need but cannot afford T1 OGS by 2030
- 31% of households without grid or micro-grid connections that require subsidy for T1
- \$2.5 billion total financing required if 50% demand-side subsidy is provided

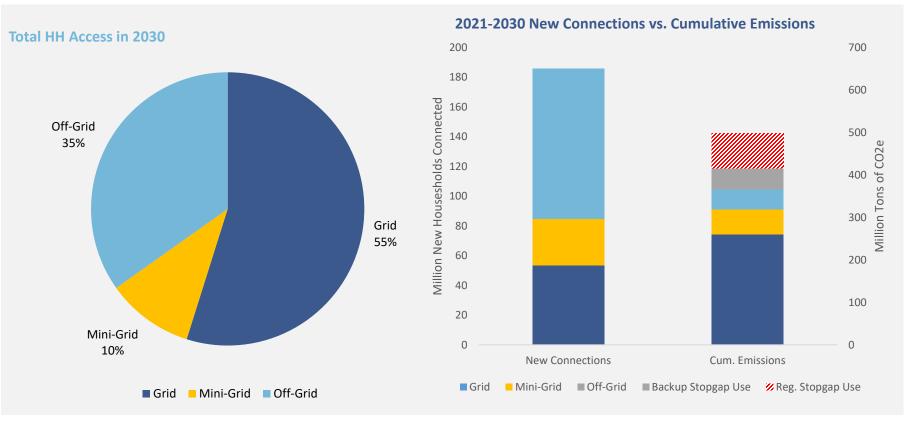
Sub-Saharan Africa Affordability of Monthly Electricity Payments

Monthly Electricity Payment (US\$)

CATALYST

Pillar 1.5– Modern Energy Minimum Threshold



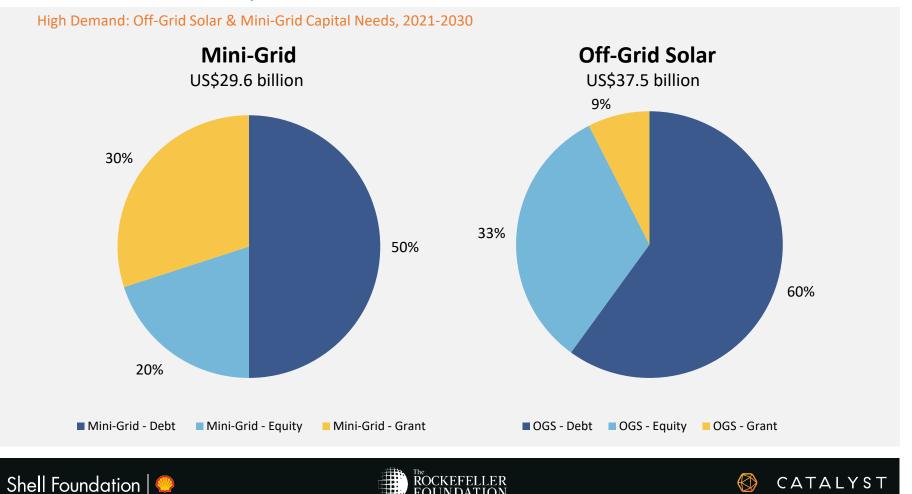

MEM yields additional 112 Mt CO_2e (compared to Tier 1), though per capita consumption increases to 130 kWh/year

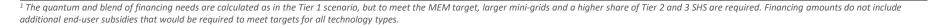
High Demand: Comparison of 2021-2030 Cum. CO₂ Emissions

¹ MEM scenario results in increased CO₂e emissions due to higher overall electricity consumption per capita as well as the need for larger mini-grids and off-grid solar systems (Tier 2 and 3), which have higher emissions associated with their manufacture and distribution

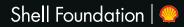
MEM requires 25M more mini-grid and 37M more Tier 3 OGS connections relative to Tier 1

- MG and Tier 3 systems required to deliver on scenario's assumed per capita consumption of 130 kWh p/a by 2030
- Over the period, mini-grids account for 16 percent of new connections and Tier 3 OGS nearly 20 percent
- In the MEM scenario, average per capita electricity consumption increases by 57 percent, and emissions 27 percent, relative to the base case


 (\mathbb{Z})

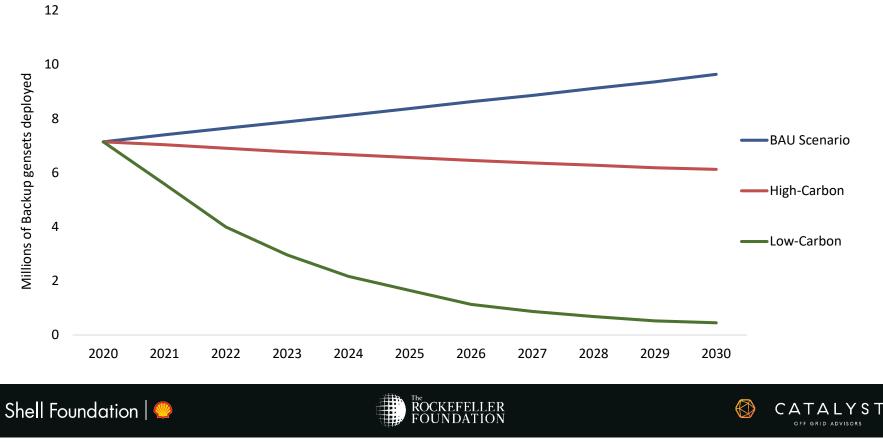

CATALYST

Pillar 1.5: HH access / Scenario: low carbon


MEM's low-carbon electrification scenario yields a US\$67.1 billion climate finance opportunity

- Larger systems required to deliver higher per capita demand of 130 kWh per year by 2030
- Off-grid solar connects 101 million households at a cost of US\$37.5 billion, while mini-grids require US\$29.6 billion to electrify 31.3 million households

Pillar 2: eliminating backup genset use by African enterprises and households by 2030

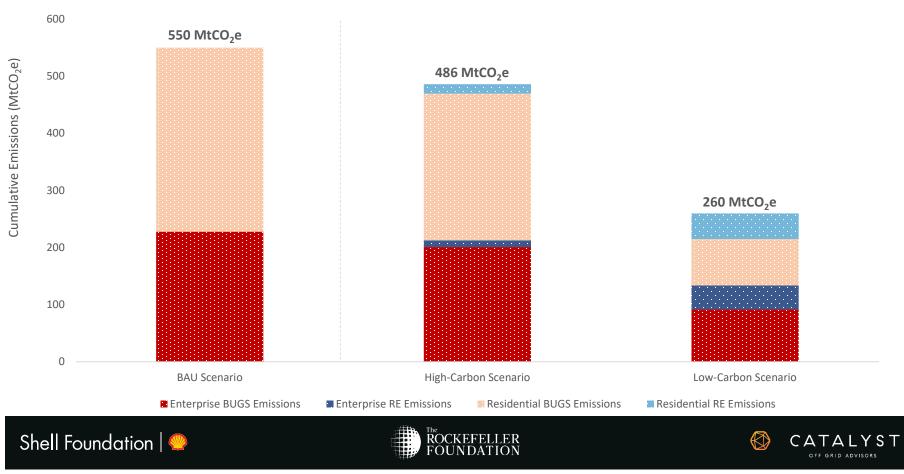

Pillar 2: greening backup

All scenarios

The pace of phasing out fossil-fuel burning gensets with renewable solutions impacts scenario emission profiles

- High-carbon scenario assumes that, when gensets reach end of life, 10 percent are replaced with renewables
- In **low-carbon scenario**, at end of life, 50 percent of gensets are **replaced** with renewables; by 2030 nearly all gensets are retired

Evolution of Backup Genset Fleet for Households and Enterprises by Scenario, 2021-30

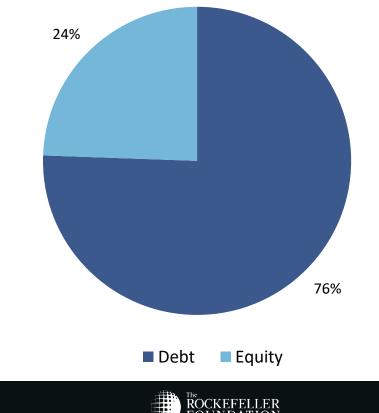

Pillar 2: greening backup

All scenarios

Displacing 9.2 million backup gensets with decentralized renewables reduces African emissions by 226M tons of CO_2e

- Emissions reductions are driven by the growth rate in backup genset fleets and the rate at which **backup gensets are replaced by** renewables; replacement rates are varied across scenarios
- BAU has highest carbon footprint because renewables do not become part of the fleet mix

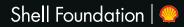
Comparison of 2021-2030 Backup genset, Household, and Enterprise CO₂ Emissions


1. The modeling assumes that average capacity factors of back-up generators remain fixed over time, in line with historical averages (i.e., assumes no improvement or deterioration in grid reliability).

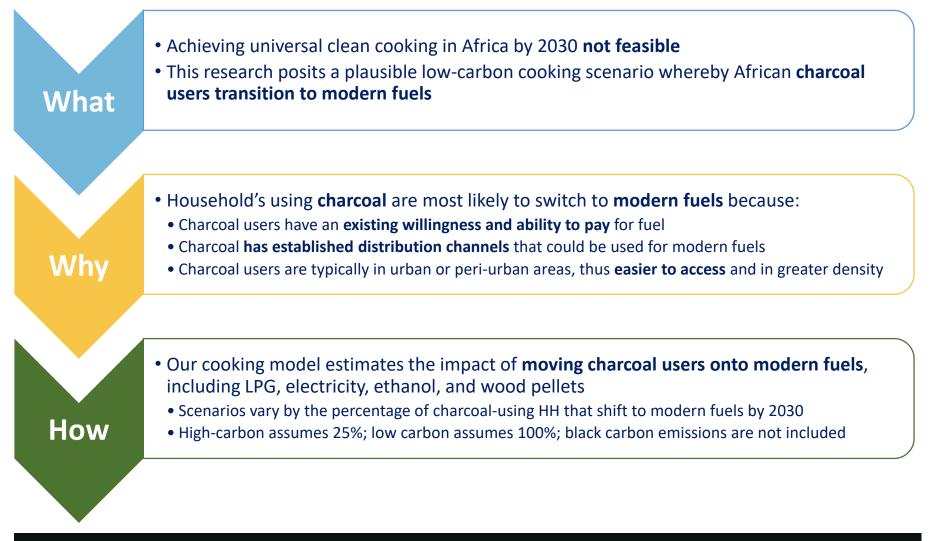
Shell Foundation

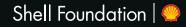
Low-carbon scenario yields a US\$134.4 billion climate finance opportunity

- Displacing **9.2** million backup generators with a total generation capacity of **163 gigawatts** comes at a significant cost
- Generator displacement in later years is forecasted to be considerably cheaper thanks to **sharp** reductions in RE technology costs, particularly lithium-ion batteries

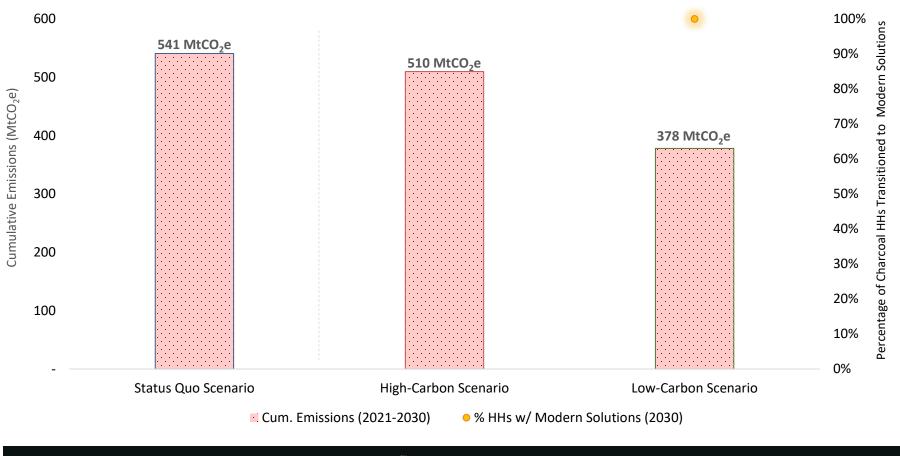

Back-up: Renewable Energy Capital Needs, 2021-2030

¹Quantum and blend of financing needs are based on the authors' estimates and expectations about the evolution of solar+battery system costs through 2030. Grant needs for purveyors of genset replacement technology are expected to be very limited given the strong financial case for making these investments, with debt financing playing an even more significant role due to C&I enterprises' proportionally larger working capital needs.


Pillar 3: moving African households that cook with charcoal onto clean cooking solutions



Clean Cooking: establishing a plausible 2030 scenario for Africa




()

Displacing charcoal with modern fuels in Africa yields 132 million tons of avoided CO₂e emissions

39 million new households would cook with **modern fuels**, representing an 83 percent increase in primary¹ modern fuel users in Africa

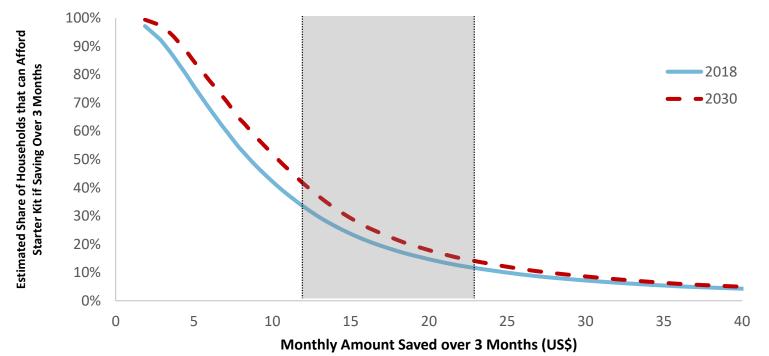
Comparison of 2021-2030 Cum. CO₂e Emissions by Scenario from Cooking

 \bigcirc

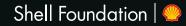
CATALYST

Pillar 3: cleaner cooking

Displacing majority of charcoal with modern fuels in Africa would cost US\$7.5 billion


The majority of charcoal households transition **\$7.5 billion investment** required to to LPG and electricity produce and distribute stoves and build downstream infrastructure (though stacking continues) **HHs Transitioning Financing Need** by Fuel by Fuel Clean Cooking Capital Needs, 2021-2030 45 8,000 40 7,000 10% 35 20% 6,000 30 5,000 25 Million Million Pellets 4,000 20 Ethanol 3,000 15 Electricity 70% 2,000 LPG 10 1,000 5 Grant 0 Equity Debt C HHs **Financing Need** Shell Foundation 🧠 \bigcirc OCKEFELLER CATALYST

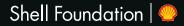
¹ The model assumes that charcoal households that transition to modern fuels continue to meet 30% of their cooking energy needs with charcoal


² Investment requirements for modern fuel transitions are based on estimates from the Modern Energy Cooking Services (MECS) programme and include stove and downstream infrastructure investment needs

The upfront cost of converting to modern fuels is high, ~\$70 for typical 'starter kits' (e.g., stove, cylinder, etc.)

- Moving the **39 million** households cooking primarily with charcoal today onto modern fuels will require a **subsidized starter** kit or **PAYGO modalities**.
- We estimate that without widespread PAYGO modalities for the various modern fuels, an upfront subsidy of 50% of the equipment cost, totaling \$2 billion over 10 years will be required to move charcoal users onto modern fuels.

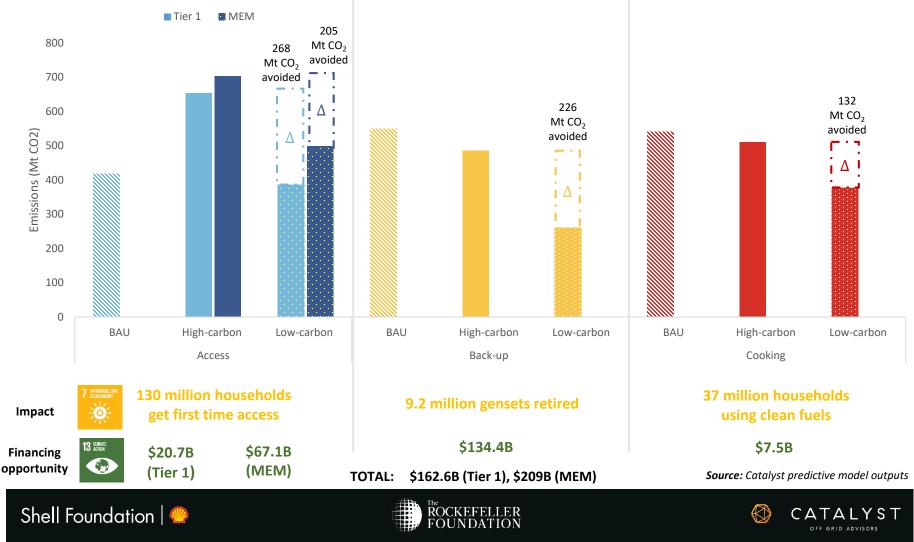
Share of households that can afford starter kit based on monthly savings over 3 months



 \bigcirc

CATALYST

Africa's SDG 7 and SDG 13 call to action



These scenarios avoid 563-626 million tons of CO_2 , deliver significant SDG 7 impacts, and unlock a substantial climate finance opportunity

Emissions from plausible low-carbon scenarios are benchmarked against equally plausible high-carbon counterfactuals; the difference between the two constitutes the avoided emissions

¹ The Tier 1 scenario sees expansion of all access technologies (grid, mini-grid, and OGS of various sizes) but the majority of low- and lower-middle income households get access via Tier 1 OGS technologies. The Modern Energy Minimum (MEM) scenario targets per capita consumption levels of 130 kW by 2030 and thus more households need mini-grid connections and Tier 2 and 3 OGS systems as a result. Summing up Africa's low-carbon access scenarios: huge impact, significant avoided CO₂ emissions, large climate opportunity

A low-carbon scenario contributes massively toward universal access and improved cooking

132 million

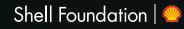
new connections from off-grid technologies delivered

9.2 million

gensets used by enterprises and households displaced

39 million new households would cook with modern fuels

A low-carbon scenario benchmarked against a high-carbon scenario yields


Up to 626 million tons of avoided CO₂e emissions over the next decade

A **low-carbon scenario** requires substantial volumes of **new capital**

US\$162-209 billion

climate finance opportunity

Three calls to action to climate-first investors to help catalyze the SDG7- climate finance nexus

- mechanisms

via existing vehicles (e.g. CrossBoundary Energy Access Facility, Energy Access Ventures, Facility for Energy Inclusion) to quickly scale impact and get Africa on the lowcarbon SDG7 trajectory.

Finance existing energy

access enterprises

to monetize social & environmental impact of DRE enterprises, such as Universal Electricity Facility, Decentralized Renewable Energy Credits, and Digital Carbon Credits. that leverage the cobenefits of the SDG7-SDG13 nexus & roll out new solutions to unlock climate funding for the DRE sector.

of investment opportunities

\$200+

Billion

Climate Finance Catalysed

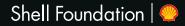
Support new, innovative **A** Help define the next wave

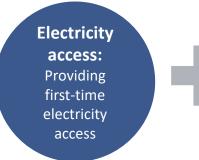
Backup genset research produced in association with

Inputs from a Technical Working Group, comprised of representatives from

Backup genset research was based on previous work commissioned by

C Finance Corporation WORLD BANK GROUP

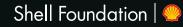

The Report is endorsed by key DRE industry associations


Annex: research methodology & additional analysis

Key questions guide the research agenda

Greening back-up generation: Solving the unreliable grid challenge

- How to transition households off stopgap solutions and onto modern, affordable, and reliable sources of electricity?
- What are the avoided emissions associated with a low-carbon universal electrification scenario (and in a high demand context)?
- What would it cost to make this a reality?

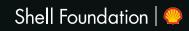

- How do we get enterprises and households off their dependency on backup fossil-fueled generators (backup genset)?
- What are the emissions from the use of backups, and what would the counterfactual look like?
- How much would it cost to replace backup generators with renewable backup technologies?

- What are the emissions associated with traditional cooking methods?
- What would it look like if a meaningful percentage of users were to graduate to modern cooking solutions?
- What would this cost and what are some of the other key considerations?

- What is the climate impact (measured in GHG emissions) of different universal electrification (and improved cooking) scenarios?
- What is the climate finance opportunity associated with a lowcarbon universal electricity access scenario?

CATALYST

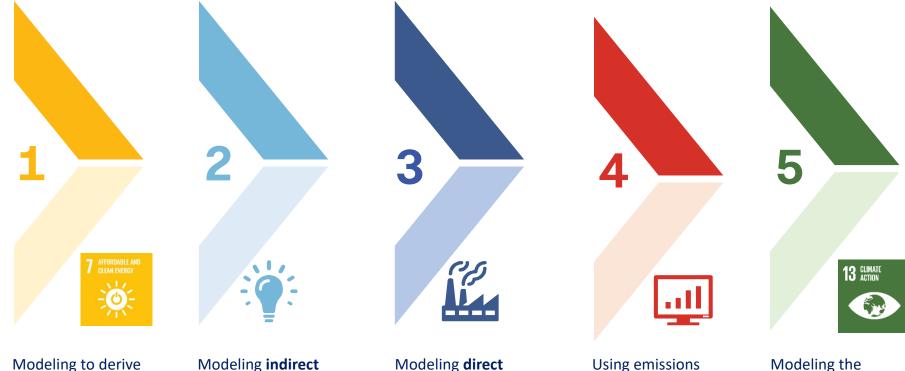
 \bigcirc

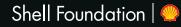

Research scope: focused on portions of SDG 7 and 13

Climate Finance Opportunity	Our Coverage		
Global	Africa, India, Myanmar only		
SDG 7: Access to affordable, reliable, sustainable, and modern energy for all	 Off-Grid Solutions for Households Grid Extension for Households Cooking access for Households Electricity Access for Enterprises 		
SDG 13: Take urgent action to combat climate change and its impacts	Carbon ScenariosAvoided Emissions		
Increase share of renewables	Households (Backup genset)Enterprises (Backup genset)		
Leveraging climate finance for SDG 7/13 nexus	 Universal electrification Improved electricity access Cooking access 		

Full alignment

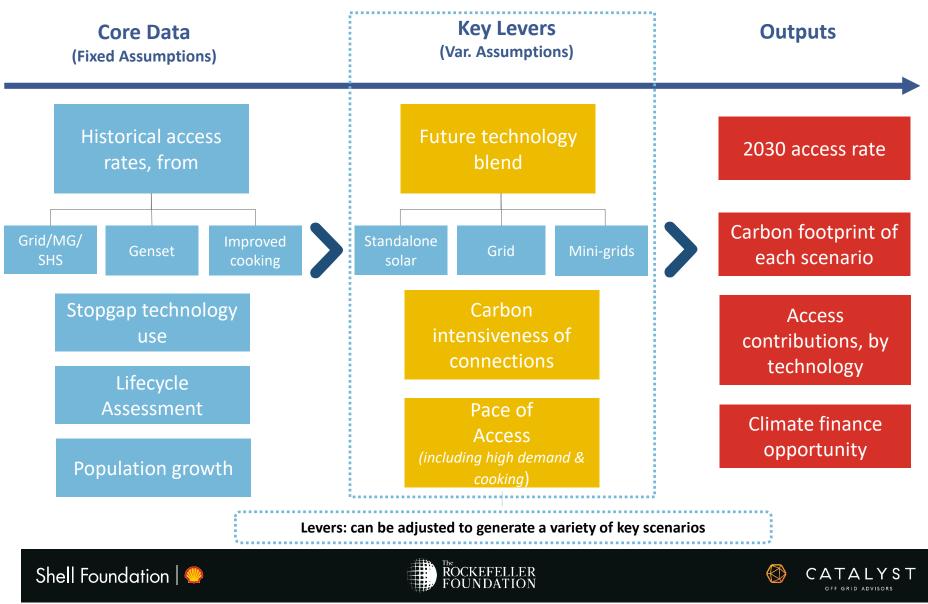
Partial alignment



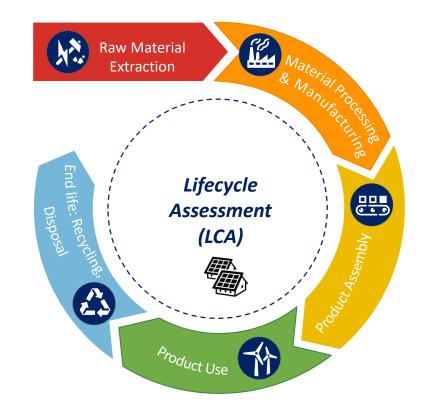

CATALYST

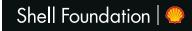
 \bigcirc

We built empirical models, with 5 main components



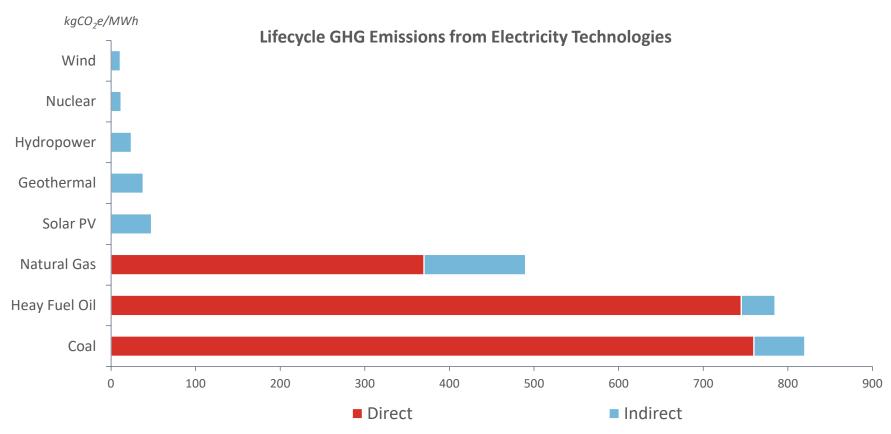
each technology's contribution towards achieving SDG 7, via different scenarios, including 'high demand' universal access Modeling indirect GHG emissions of each electricity generation & cooking technology, plus those from stopgap lighting Modeling direct GHG emissions from household and enterprise electrification, household cooking Using emissions modeling results from **step 2+3** to derive **total emissions** from step 1 scenarios Modeling the **Climate Finance Opportunity** in Africa, India, Myanmar


We modeled various SDG 7 scenarios and the associated carbon footprint



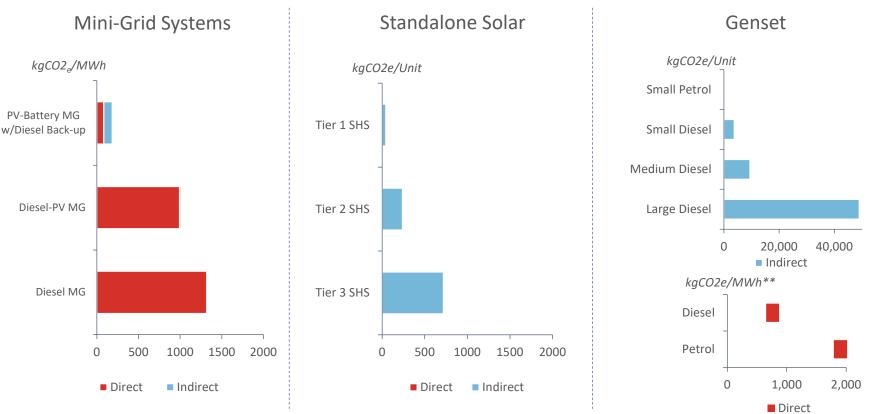
We undertook lifecycle assessment to understand the GHG footprint of each generation technology

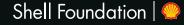
Every energy technology has a carbon footprint, even low-carbon technologies


- 'Cradle to grave' approach in lifecycle assessment (LCA)
 - Assesses environmental impact from extraction (cradle) to end use (grave) of energy technologies:
 - Grid-tied generation (e.g., solar, gas)
 - Mini-grids
 - Standalone home systems
 - Stopgap solutions
 - Standalone genset
- LCA of energy technologies to capture GHG emissions
 - LCA captures CO₂ associated with the production of all energy technologies
 - No carbon footprint from operation of solar technologies (unlike fossil fuels)

Lifecycle GHG emissions of utility-scale power generation technologies

- **Indirect** GHG emissions: generated from extracting, processing and manufacturing activities associated with manufacturing, transporting, and assembling generation technologies
- Direct GHG emissions: generated from operation of generation technologies, post-installation

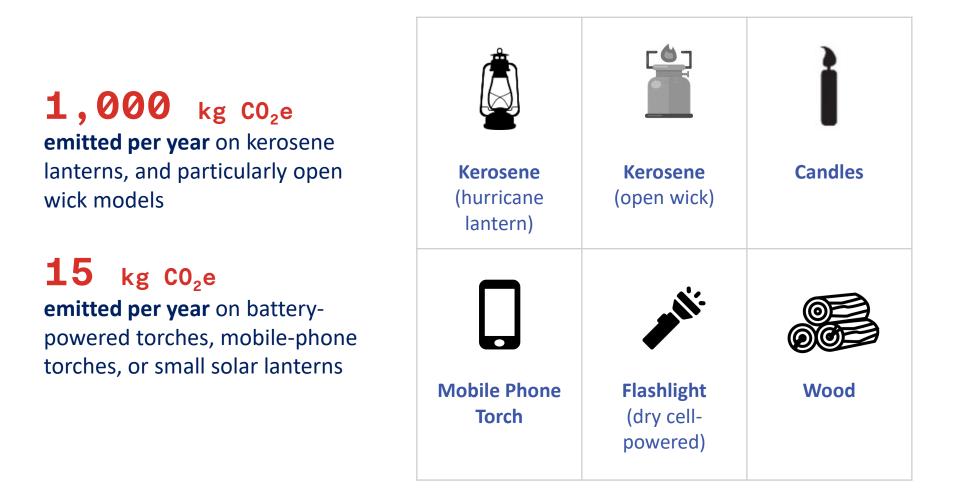

Shell Foundation 🧠

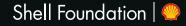

 \bigcirc

CATALYST

Standalone, mini-grids, and genset: varied units of measure, and significantly different GHG footprints

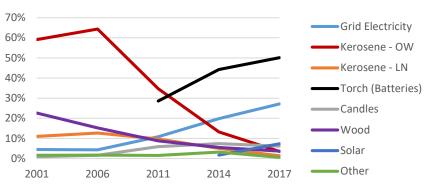
- Off-grid and mini-grid technologies offer **lower-emissions access scenario**, but *only if* fossil fuel-based generation sources are minimized
- While the level of service provided by **Tier 1** standalone solar solutions is limited to lighting and basic charging, HH can graduate to larger **Tier 2**, **3** systems as needs and purchasing power increase





Emissions from stopgap lighting solutions vary drastically as well...

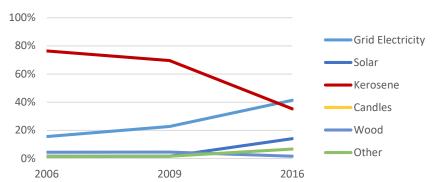
Modern, reliable electricity technologies often displace massive amounts of CO₂e emissions


...though our research shows a promising shift away from high polluting stopgap technologies (1/2)

Shell Foundation | 🧠

Rwanda

- HHs using kerosene as primary lighting source dropped from 70% to 5% between 2001 and 2017
 - In 2017, kerosene accounted for <10% of stopgap ٠ lighting used in the country
 - Torches powered by dry-cell batteries now primary lighting source for 70% of unelectrified HHs ٠



Rwanda - Primary HH Lighting Source

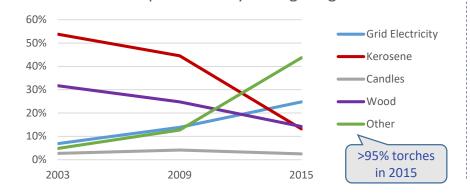
Kenya

- Kenya is a major outlier, with sticky kerosene users who switch mostly to the grid or solar
 - In 2017, kerosene still accounted for nearly half of stopgap lighting used in the country
 - Torches were the primary lighting source for just 5% of households in 2016

 \bigcirc

CATALYST

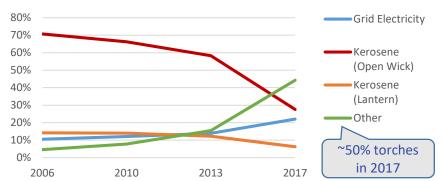
Kenya - Primary HH Lighting Source



Country-level deep dives show a striking shift in kerosene usage (2/2)

ROCKEFELLER

- HHs using kerosene as primary lighting source dropped from 54% to 13% between 2003 and 2015
 - In 2015, kerosene accounted for <20% of stopgap lighting used in the country
 - Torches powered by dry-cell batteries are primary lighting source for >40% of unelectrified HHs


Shell Foundation | 🥮

Mozambique - Primary HH Lighting Source

Uganda

- HHs using kerosene as primary lighting source dropped from 85% to 34% over the last decade
 - Torches powered by dry-cell batteries now primary lighting source for >21% of unelectrified HHs
 - In 2017, kerosene did still account for approx. half of stopgap lighting used in the country

 \bigcirc

CATALYST

Uganda - Primary HH Lighting Source

Source: Relatório Final Do Inquérito Ao Orçamento Familiar (2003-2015); Uganda National Households (2006-2017)