

Presentation of Local evidence on the impact of irrigating vegetable crops from Ablah WWTP

ReWater MENA: More and safer water reuse in the Middle East and North Africa Output 2: (2.7) LARI Demonstration site in Bekaa valley in support of the reuse standards dialogue in output 3

> Marie Therese Abi Saab 15 March 2022

Background

- Safe use of reclaimed water is increasingly being recognized by governments and international organizations as part of the solution to water scarcity and pollution.
- The use of reclaimed water becomes particularly attractive when alternative freshwater resources are contaminated.
- This is the case of the Litany River Basin...

uncontrolled disposal of liquid and solid wastes including industrial, municipal and even agronomical wastes

Background

Dead river (Shaban & Hamzé, 2018)

low water quality (SDG 6.3) inefficient water use (SDG 6.4) slow progress on achieving IWM (SDG 6.5) (Darwish et al., 2021)

Pollution levels exceeded most of the time the international norms (Abi Saab et al., 2018; Mcheik et al., 2018; Nemeh and Haidar, 2018; Fadel et al. 2016; Darwich et al. 2008) Limited studies in Lebanon on the agricultural use of treated water Table grapes (Abi Saab et al., 2020; Mcheik et al., 2017) Eggplant (Abi Saab et al., 2021) Spinach (Mcheik et al., 2018)

Are freshwater and reclaimed water safe for vegetable irrigation?

Empirical evidence from Lebanon Investigating the real threats on public health, environment, food security, and safety is necessary

Background						
		E. Coli or Faecal Coli /100ml	Nematode eggs/l	Total Suspended Solids TSS mg/lit	Crops eaten uncooked is allowed	Code of practice
VHO		1000	<1	-	Yes	Yes
EBANON		<200	<1	60	No	No
Proventer	wastewater reu		non			
Proposition for y	vostovotov vos	as anidalines in Labor				
Parameter	wastewater reu	Category	non			
Parameter	I	Category II	III			
Parameter BOD ₅ (mg/l)	I 25	Category II 100	100 non			
Parameter BOD ₅ (mg/l) COD (mg/l)	I 25 125	Category II 100 250	III 100 250	Vegetables eaten	raw cannot be	grown
BOD ₅ (mg/l) COD (mg/l) TSS (mg/l)	I 25 125 60	Category II 100 250 200 200	III 100 250 200	Vegetables eaten	raw cannot be	grown
Parameter BOD ₅ (mg/l) COD (mg/l) TSS (mg/l) pH	I 25 125 60 6-9	Category II 250 200 6 - 9	III 100 250 200 6 - 9	Vegetables eaten	raw cannot be	grown
Parameter BOD ₅ (mg/l) COD (mg/l) TSS (mg/l) pH Cl ₂ residual (mg/l)	I 25 125 60 6-9 0.5-2	Category II 100 250 200 6 - 9 0.5 - 2	III 100 250 200 6 - 9 0.5 - 2	Vegetables eaten	raw cannot be	grown
Parameter BOD ₅ (mg/l) COD (mg/l) TSS (mg/l) pH Cl ₂ residual (mg/l) F. Coliforms (in 100ml)	I 25 125 60 6 - 9 0.5 - 2 <200	Category II 100 250 200 6 - 9 0.5 - 2 <1000	III 100 250 200 6 - 9 0.5 - 2 one required	Vegetables eaten	raw cannot be	grown

Background

Trial 1:

Assessing the productivity, the quality and (agronomic, environmental and health) risks of the use of different (waste)water qualities to irrigate various crops under different farm irrigation practices.

Trial 2: Assessing the time to withheld irrigation water before harvest as a farm-level option for minimizing health risks in vegetable production

2 growing seasons: 2019 and 2020

Trial 1:	
Experimental site	Water sources
LARI field close to Ablah WWTP and the Litani River.	GW- groundwater abstracted from LARI well at LARI
	TW- treated wastewater from Ablah WWTP
• Experimental design	RW- surface water from the Litani River
Split split plot design	
36 treatments	Types of irrigation methods
3 replicates/treatment	Dr- Drip irrigation,
Total of 108 plots	Sp- Sprinkler irrigation
	Sr- Surface irrigation
	Types of crops
	parsley, lettuce, radish and spring onions.

Drip irrigation

Sprinkler irrigation

Surface irrigation

Trial 1:

Data collection

- Soil sampling and analysis: Before and after each growing season,
- Water analysis: physico-chemical characteristics, pathogen and metal presence.
- Yield quantitative parameters (fresh and dry yield, etc.).
- Yield qualitative parameters: (plant mineral analysis), etc.
- Microbial contamination of fruits: pathogenic loading in edible parts of vegetables (E. coli, salmonella, helminth eggs, etc.).
- Metal contamination: heavy metals accumulation in edible parts of the vegetables.

Trial	1:
Data a	analysis
• Wat	ter quality
• Yiel	ld and nutritional value of crops
• Bio	accumulation factor of metals in crops (BAF)
• Esti whit	imated daily intake (EDI) of heavy metals for adults and children (index value less than unity (1.0) shows safe levels le the values higher than 1.0 are associated with adverse health effects).
• Hea	alth risk assessment: Health Risk Index (HRI) and Target Hazard Quotients (THQ)
• Agr	conomic risk assessment: soil salinity buildup, metal contamination of the soil.

IIIai 1. Kesuits of t	ne wa	ter qu	anty													
		c	SW			т	w			R	w		Allowable lin		0	
	20	19	20	20	20	19	20	20	201	19	20	20	a	<i></i>		
	Value	STDEV	Value	STDEV	Value	STDEV	Value	STDEV	Value	STDEV	Value	STDEV	Category I	Category II	Category III	
Physico-chemical parameters (mg.L-1)																
pH	7.21	0.14	7.80	0.21	7.72	0.30	7.68	0.19	7.31	0.18	7.62	0.12	-	-	-	
Electrical conductivity (dS.m-1)	0.78	0.16	0.92	0.09	1.14	0.15	1.01	0.11	2.29	0.81	2.73	0.74	-	-	-	
COD	36.33	11.74	20.24	18.21	66.95	19.51	20.13	18.82	105.25	34.02	273.12	219.21	125	250	250	
BOD ₅	16.83	2.64	6.33	9.81	27.00	8.65	20.01	14.79	47.33	15.63	79.67	61.83	25	100	100	
Total Suspended Solids	4.11	1.47	3.40	2.96	27.51	6.34	3.93	2.13	33.55	7.90	13.83	4.36	60	200	200	
Nitrates	26.93	6.90	20.42	8.11	14.96	4.79	16.50	13.83	9.66	4.73	9.12	11.40	30	30	30	
Phosphates	0.24	0.56	0.01	0.01	0.77	0.30	2.09	2.64	4.88	3.83	3.01	1.63	-	-	-	
Potassium	2.33	0.55	1.67	0.66	28.58	12.47	14.68	14.64	78.56	13.87	38.63	7.64	-	-	-	
Sodium	15.96	2.55	14.78	1.10	26.00	3.15	29.02	17.04	115.59	5.20	90.93	26.55	-	-	-	
Pathogens in water																
E. coli (CFU/100 mL)	6.58E+01	3.53E+01	1.84E+02	1.06E+02	1.57E+03	5.75E+02	9.67E+00	1.15E+00	1.78E+05	1.65E+05	4.84E+05	6.00E+05	<200	<1000	-	
S-111-	4.6		4.6		Sometimes		A.b		Sometimes		Sometimes		Abuunt	A. h	Alternat	
Samonena	Absence	-	Absence	-	present	-	Absent	-	present	-	present	-	Absent	Absent	Absent	
Parasites (ova//L)																
Ascaris	0.00	0.00	0.00	0.00	2.00	2.76	0.00	0.00	2.67	3.67	1.00	1.00				
Chilomastix mesnili	0.50	0.55	1.00	1.00	0.83	0.98	0.00	0.00	1.50	1.97	1.00	2.00	<1	<1	<1	
Blastocystis	0.67	0.52	2.00	1.00	1.00	1.55	0.55	0.30	1.67	2.73	1.00	2.00				
Endolimax nana	0.00	0.00	1.00	2.00	0.67	1.03	0.00	0.00	1.00	1.67	2.00	2.00				
Trace metals (mg.L ⁻¹)																
Cr	1.15	0.00	0.25	0.36	1.16	0.01	0.10	0.13	1.15	0.01	0.13	0.17		2		
Ni	0.20	0.00	0.03	0.08	0.21	0.00	0.13	0.22	0.22	0.01	0.04	0.08		0.5		

Trial 1: R	esults of	f the <mark>yiel</mark>	d and nu	tritional	value of	crops						
	Fresh weig	ght (Kg. m ^{.2})	N (mg. 10	0 g ⁻¹ FW)	P (mg. 1	00 g ⁻¹ FW)	K (mg. 10	00 g ⁻¹ FW)	Ca (mg. 1	00 g ⁻¹ FW)	Mg (mg. 1	00 g-1 FW)
I reatment	2019	2020	2019	2020	2019	2020	2019	2020	2019	2020	2019	2020
Water sources												
Groundwater	$2.59\pm2.29b$	$2.76\pm2.43\ b$	$146.52 \pm 26.14 a$	$78.12 \pm 15.96 a$	$22.97\pm7.92b$	$11.76\pm7.56~b$	$164.74 \pm 27.72 b$	$259.56\pm64.66b$	$60.19\pm21.38~b$	$106.68\pm56.28b$	$21.38\pm7.92b$	$26.88\pm25.2\ b$
River - Litani	$2.73\pm2.82\ a$	$3.49\pm2.59\ a$	$63.018 \pm 28.00 \ c$	$70.05\pm21.1\ c$	28.79± 7.78 a	$14.35 \pm 13.50 \ a$	210.06 ± 42.79 a	$285.27 \pm 227.88 a$	83.25 ± 14.78 a	124.91 ± 91.99 a	$29.56\pm5.45\ a$	$37.98 \pm 49.78 \ a$
Treated water - Ablah	$2.65\pm2.70~b$	$3.45\pm2.63\ a$	$126.55 \pm 30.68 b$	$74.802\pm32.88b$	31.45 ± 10.74 a	$11.50\pm10.68~b$	213.226 ± 88.97 a	$279.19 \pm 234.27 \ a$	80.54 ± 16.88 a	$121.66 \pm 69.05 \ a$	$29.91\pm6.14\ a$	$32.13\pm23.84\ ab$
	1		1		1		1 					
Irrigation methods	1		1		1		1					
Drip	$4.34\pm3.27\ a$	$3.70\pm2.70\ a$	119.92 ± 37.95 a	$76.12 \pm 19.03 \ a$	$30.36 \pm 8.35 \text{ a}$	$12.71\pm9.08\ ab$	$214.80 \pm 78.18 a$	$289.66 \pm 207.93 \ ab$	$81.21 \pm 14.42 \ a$	$99.91 \pm 66.61 \ b$	$30.36\pm6.07\ a$	$40.44 \pm 17.46 a$
Sprinkler	$2.34\pm1.77b$	$3.34\pm2.61\ a$	$100.50 \pm 38.43 b$	$66.97 \pm 27.15 \ b$	$25.12\pm8.13~b$	$8.72\pm6.35b$	187.94 ± 56.21 c	$237.90 \pm 168.90 b$	$66.51 \pm 14.78 \text{ b}$	$115.31 \pm 56.30 \ b$	$23.65\pm6.65b$	$23.53 \pm 12.67 \ c$
Surface	$1.30\pm1.35~c$	$2.64\pm2.27~b$	114.94 ± 57.90 ab	$88.98 \pm 27.24 \; a$	29.36 ± 12.59 b	$18.10 \pm 15.38 \ a$	$184.75 \pm 45.08 b$	$329.42 \pm 237.11 \ a$	75.51± 29.37 b	$152.95 \pm 97.74 \ a$	$26.85\pm7.39b$	$29.06\pm20.08\ b$
Crops												
Results highlig	ghts	1.00 1.12		101-0 11.00	i					01000 0000		13.05 03.03

· Vegetables irrigated with TW are of good nutritional quality, as those irrigated from other water sources.

- · Drip method presented the highest yield
- · Parsley showed the highest content of minerals followed by onion, lettuce and radish.
- Results on the mineral content of the grown crops were in agreement to those reported by the USDA National Nutrient Database for Standard References (Haytowitz et al., 2019; USDA, 2020).

Trial 1: Results of the metal contamination in food crops

- The concentrations of most metals in vegetables were significantly lower than the safe limits of the FAO/WHO of the Food Standards Programme Codex, except for Zn and Cr.
- Parsley and onion showed the highest metal contamination.
- The trends in the bioaccumulation factor (BAF) as well as the estimated dietary intakes (EDI) of metals were in the increasing order of Cu< Cd<Ni<Cr<Zn.
- The THQ values for all metals were lower than 1.0.

Trial 2:

Assessing the optimal time to withheld irrigation water before harvest as an on-farm practice in lettuce production with reused water

Experimental site

LARI field close to Ablah WWTP and the Litani River.

Experimental design

RCBD

4 treatments

3 replicates/treatment

Total of 12 plots

To minimize risks of produce contamination with helminth eggs, E. coli, salmonella and other pathogens that are harmful to human health.

Trial 2:

Data collection

- Water analysis: physico-chemical characteristics and pathogens.
- Microbial contamination of produce: pathogenic loading in edible parts of the vegetables (E. coli, salmonella, helminth eggs, etc.).
- Yield quantitative and qualitative parameters

Data analysis

· Optimal irrigation withholding time under Beqaa weather conditions with maximum pathogen removal at minimum yield or quality loss

• The mineral content of the grown crops were also in agreement to those reported by the USDA National Nutrient Database for Standard References (Haytowitz et al., 2019; USDA, 2020).

- In season 2019, Ascaris (5.00 % of total samples) was the most encountered parasitic contaminant on lettuce, followed by Endolimax nana (3.33%). In this study, it is obvious that the occurrence of pathogenic parasites (mainly Ascaris) were low on irrigated lettuce and were not affected by the time to withheld irrigation at harvest.
- In season 2020, there was no parasites detected on the collected lettuce heads which could be explained by the fact that the treated effluent used for irrigation was of better quality than in season 2019 and it was free from parasites.
- In both seasons, there was no bacterial loading on harvested crops in terms of E. coli and Salmonella. It should be also mentioned that, in season 2020, the collected lettuce heads were also analyzed for the presence of E. coli 0157 and Listeria monocytogenes. The results showed that such pathogenic bacteria were not present on the crops.
- Sanitary risk associated with irrigation practice, although very low, is always present.

Conclusion In Lebanon, the food chain remains an important exposure pathway to contaminants due to widespread pollution of soils and waters. Empirical evidence from Lebanon showed, through this study, that the quality of irrigation water, the crop selection, the choice of irrigation method, but also the local environmental conditions would all influence produce safety. Therefore, the elaboration and implementation of sustainable policy for the monitoring and management of water quality leading to its protection and sustainable use is urgently needed. Of particular importance is the development of irrigation water quality standards (or, more broadly, water reuse standards) that promote health protection and food safety at affordable costs.

Conclusion

- Our research has shown that the adoption of drip irrigation with water of less than 3log E. coli CFU/100ml has shown to be safe even for vegetables consumed raw, with the exception of underground crops (such as onion or radish) that should not be irrigated with water having more than 2log E. coli CFU/100ml.
- Additionally, TW showed not to have an adverse effect on vegetables quality as compared to vegetables irrigated with other water sources.
- These results deserve to be considered in the **formulation of the first Lebanese standards for water reuse** with the aim of realistically protecting human and environmental health while making a more productive and efficient use of water resources.

Co	onclusion		Drip irrigated			
Pro	roposition for wastewater reuse guidelines in Lebanon		Drip irrigated vegetables eaten raw are allowed	vegetables eaten raw are allowed except those grown underground	,	
		Parameter	1	Category		
			I	П	ш	
		BOD ₅ (mg/l)	25	100	100	More barriers???
	Vegetables eaten raw	COD (mg/l)	125	250	250	cessation of
	cannot be grown	TSS (mg/l)	60	200	200	irrigation before
		pH	6 – 9	6 – 9	6 – 9	harvesting
		Cl ₂ residual (mg/l)	0.5 -2	0.5 -2	0.5 -2	
		F. Coliforms (in 100ml)	<200	<1000	None required	
		Helminth ova (in 1 lit)	<1	<1	<1	
		Proposed by FAO within a	a local project year 20	10/2011		

Water and Environment Journal Promoting Sustainable Solutions

Water and Environment Journal. Print ISSN 1747-6585

Table grapes irrigation with treated municipal wastewater in a Mediterranean environment

Marie Therese Abi Saab ២ ^{1,2}, Joanna Zaghrini³, Hassane Makhlouf³, Salim Fahed¹, Dany Romanos^{1,2}, Yara Khairallah¹, Celine Hajjar¹, Roula Abi Saad¹, Mohamed Houssemeddine Sellami⁴ & Mladen Todorovic⁵

¹Climate and Water Unit, Lebanese Agricultural Research Institute, Fanar, Lebanon; ²School of Engineering, The Holy Spirit University of Kaslik, Kaslik, Lebanon; ³Lebanese University – Faculty of Sciences, Fanar, Lebanon; ⁴National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR–I.S.A.FO.M.), Ercolano, Italy; and ^aCIHEAM—Mediterranean Agronomic Institute of Bari, Valenzano, Italy

Keywords

Abstract

effluent reuse; fruit quality; microbiological status; mineral analysis.

Correspondence M. T. Abi Saab, Climate and Water Unit, Lebanese Agricultural Research Institute This study investigated the effect of different water quality regimes [Freshwater (FW), treated wastewater (TW) and alternating FW and TW (FW-TW)] on drip-irrigated table grape yield, quality and microbial contamination. Water and soil samples were analysed. In addition, grape samples were harvested for quantitative and aualitative evaluation. The results showed that the plants irrigated with TW and

ICS 15(08)·1095-1101 (2021)	ISSN:1835-2707
oi: 10.21475/ajcs.21.15.08.p2711	1511.1655-2707
reated municipal wastewater reuse for eggplant	t irrigation
/larie Therese Abi Saab ^{1*} , Claude Daou ² , Isam Bashour ³ , Anto	un Maacaron ⁴ , Salim Fahed ¹ , Dany
omanos ¹ , Yara Khairallah ¹ , Nada Lebbous ¹ , Celine Hajjar ¹ Rou	ıla Abi Saad ¹ , Caroline Ojeil ¹ , Mohamed
loussemeddine Sellami ⁵ , Salim Roukoz ⁶ , Maher Salman ⁷	
ebanese Agricultural Research Institute, P.O. Box 90-1965, Fanar, L	ebanon
Lebanese University. Faculty of Sciences. Fanar. Lebanon	
American University of Beirut, Beirut, Lebanon	
Food and Agriculture Organization (FAO), Beirut, Lebanon	
National Research Council of Italy, Institute for Agricultural and For	estry Systems in the Mediterranean (CNR–
S.A.FO.M.), Via Patacca, 85, – 80056 – Ercolano (NA) Italy	
Ministry of Agriculture, Beirut, Lebanon; (7) Food and Agricultural C	Organization (FAO), Rome, Italy
Corresponding author: mtabisaab@lari.gov.lb	

Working team from LAK						
LARI Departments/Laboratories	Staff					
	Rima El Haj					
Bacteriology Lab	Joseph Touma					
Dacteriology Eab	Hala Toubia					
	Rami Rachid					
Parasitology Lab	Ziad Rizk					
Virology Lab	Jeanne El Haj					
Plant and Fartilizara Lab	Danny Romanos					
Flant and Fertilizers Lab	Yara Khairallah					
Soil Lab	Valerie Azzi					
Woter Lab	Celine Hajjar					
water Lab	Roula Abi Saad					
Residues Lab	Aadla Jammoul					
	Marie Therese Abi Saab					
Climate and Water Unit	Salim Fahed					
Cinnate and Water Unit	Ali Haj Hassan					
	Rhend El Haj Sleiman					
	Ihab Jomaa					
Irrigation and Agro meteorology Department	Randa Massaad					
	Sleiman Skaff					

Working team from LARI

Thank you