

DEPARTMENT OF ENERGY RENEWABLE ENERGY MANAGEMENT BUREAU

MANUAL

for

Solar PV Training

June 2009

This manual was developed by the Department of Energy (DOE) through the technical assistance under the Project on "Sustainability Improvement of Renewable Energy Development for Village Electrification in the Philippines" which was provided by the Japan International Cooperation Agency (JICA).

For a better tomorrow for all. Japan International Cooperation Agency

TABLE OF CONTENTS

1	OBJECTIVE	1
2	TRAINING COMPONENTS	1
3	CURRICULUM	2
4	TRAINING MATERIALS	2
5	TRAINING POINTS	3
5.1 5.2	LECTURE POINTS	
6	EXAMINATION	4
6.1 6.2 6.3	PREPARATION OF EXAMINATION PAPER EXAMINATION RULES GRADING AND EVALUATION	•4
7	AMENDMENT OF THE MANUAL	5

LIST OF ANNEXES

- ANNEX 1
- : Components of Solar PV Training Course : Standard Training Curriculum for PV Trainer and PV Engineer : Solar PV Technology Training Text : Examination Evaluation Sheet ANNEX 2
- ANNEX 3
- ANNEX 4

1 OBJECTIVE

DOE and JICA have developed two solar PV training courses since 2005. One is "Solar PV Trainers' Training Course" and the other is "Solar PV Engineers' Training Course". The training courses are designed to assist all PV project stakeholders in the creation of sustainable PV projects in the Philippines. PV training courses should be designed according to the roles of stakeholders.

The former training is provided to central engineers to develop personnel who understand PV technology properly and can teach other engineers. People who have undergone the training and passed the examination will be certified as the qualified PV trainers or assistant trainers. The latter training is provided to rural PV engineers to develop personnel who can conduct monitoring and user training properly.

The objective of this manual is to guide trainers who conduct the Solar PV Training.

2 TRAINING COMPONENTS

The training components are shown below.

Lecture			Hands-on				
Components of Training course	Trainer	Engineer	Components of Training Course	Trainer	Engineer		
Basic of solar PV system	А	A	How to use measuring instruments	А	A		
Basic of electricity	Α	A	Measuring of electrical circuit	Α	A		
Solar energy	Α	A	Performance check of C/C	Α	A		
PV module & I-V curve	Α	А	Inspection of PV system	Α	Α		
Battery	Α	А	Monitoring of existing PV system	Α	Α		
Charge controller	Α	А	Measuring of I-V curve	Α	Р		
DC light & Inverter	Α	Α	Measuring of PV module output	Α	Α		
Maintenance	Α	Α	User training	Α	A		
Monitoring & Inspection	Α	A					
Troubleshooting	Α	A					
Procurement	Α	Р					
User training	Α	A					
Design of PV system	Α	Р					

Table 1 Training components

Notes) A: All P: Partial

All basic knowledge and skills on PV technology are required for the trainers. On the other hand, the knowledge and skills to manage existing PV system properly, such as monitoring, maintenance, troubleshooting and user training, are required for rural engineers. For an effective training, it is necessary to examine the methods and contents of training to be able to meet the expectations and identify the roles of the engineers in advance. The outline of training component is provided in ANNEX 1 "Components of Solar PV Training Course".

3 CURRICULUM

The standard training curriculum is a 6-day program consisting of lectures, exercises, hands-on training and an examination. However, the schedule and curriculum of training should be arranged according to the conditions such as level of trainees and location of hands-on site. The standard training curriculum for PV trainer and PV engineer are provided in ANNEX 2.

4 TRAINING MATERIALS

The training materials are shown in the following table. Main text including all basic knowledge on PV technology is used commonly. Exercises and homework are useful for improving the understanding of trainees. In the hands-on training, the data sheets, measuring instruments and tools are required, and also the PV training kit is useful for indoor training.

Training method	Training Materials				
Lecture	Text				
	*Main text, *Text for design of PV system	1			
	*Text for user training, *Exercise & homework				
	Logistics				
	*Personal computer, *LCD, *Laser pointer				
	*White board & Marker pen, *Audio-Video equ	uipment			
Hands-on training	Data sheet for hands-on training				
	Measuring instrument				
	*DC/AC clamp meter, *Digital multi meter				
	*Digital Illuminance meter / Pyranometer				
	*AC clamp power tester, *Emission thermometer				
	*Angle locater, *Compass				
	*Hydrometer with gloves & goggles				
	*Variable resistance device for measuring I-V curve	etc.			
	PV training kit				
	*PV module, *Charge controller, *Battery				
	*DC light with receptacle, *SW, *Cable				
	*DC power supply, *Resistor	etc.			
	Tools				
	*Screwdriver, *Plier, *Wrench	etc.			
Examination	Examination Paper				
	Blank paper				
	Calculator & Pens	etc.			

Table 2 Training materials

DOE and JICA prepared PV training materials summarized over all PV training in February 2009. These materials are useable for PV training. The main text for PV training is provided in ANNEX 3 "Solar PV Technology Training Text".

5 TRAINING POINTS

Trainers should consider how to best combine the lecture and hands-on training. Basically, the hands-on training deepens the participant's knowledge and understanding on the points covered during the lecture. Repetition of both is important for effective learning.

Usually, reiterative approach of teaching is tough and boring for both trainers and participants, but they have to devote themselves to learning all the topics again to be able to absorb and understand the training modules. Also, for preparatory purposes, it is better to provide the participants with the text in advance.

5.1 Lecture Points

The lecture portion of the training is conducted based on the prescribed texts. The texts contained lots of figures, diagrams, and photos to facilitate better understanding. Therefore, trainers need to prepare what to instruct during the lecture.

Trainers should always pay attention to the level of understanding of the participants and resiliently adapt to it accordingly. The following points should be taken into consideration for effective lecturing:

- > Asking the participants to confirm understanding;
- > Homework for the review of the lectures;
- Practice to deepen the knowledge;
- Introduction of examples;
- Discussion among participants; and
- > Participant presentations.

5.2 Hands-on training Points

The hands-on training is carried out in small groups, with approximately 4 persons per group. Each group has to have at least one trainer for effective training. Data sheet for hands-on training need to be prepared in advance and provided to each participant.

The following points should be taken into consideration for effective training:

- > To explain purpose and method of the training before the training;
- > To give instruction on how to use the measuring instruments;
- To provide all members with opportunities to monitor using measuring instruments;
- > To let the participants process the meaning of the monitored data acquired on-site by themselves ; and
- > To instruct them to evaluate the result of monitored values.

If possible, it is better for all the participants to discuss and analyze the results of the hands-on training among themselves. After which, presentations should be carried out to evaluate their respective level of understanding.

6 EXAMINATION

The examination should be done to evaluate the knowledge and understanding of participants. The qualification test is adopted in the solar PV trainer's training and conducted on the last day. On the other hand, the confirmation test is adopted in the solar PV engineer training and conducted before and after training.

6.1 Preparation of examination paper

Exam questions should be prepared by trainers in consideration of the following:

- > Contents of exam should cover each subject
- > Keeping the same level of exam question
- > Maintenance of confidentially for contents of exam question and records

6.2 Examination Rules

The examinees should obey the following rules during the examination:

- > Use only pencils, erasers, rulers, calculators, and blank paper for computation.
- > Cell phone is not allowed to be used as a calculator.
- > Communicating with other examinees is prohibited during the exam.
- The examination time: Two (2) hours for qualification test

Three (3) hours for pre and post confirmation test

In case examinees break the rules, the following response should be taken.

- 1st: Give warning
- 2nd: Stop taking the examination and eject from room

6.3 Grading and Evaluation

After the examination, trainers mark the examination papers. Marking of the examinations must be double checked by at least 2 trainers. After marking, the scoring percentage of each subject should be calculated.

1) Solar PV trainers' training

Grading of the participants consists of the examination score and training evaluation. In the training evaluation, it is better for the trainers to discuss among themselves the attitude of the participants utilizing evaluation sheets. Further more, the evaluation sheet has to be filled out with the scores of the each subject and the training evaluation. Finally, the grading result of each trainee has to be decided utilizing a standard set of evaluation items for this purpose.

Tuble 0	Graung Stanuaru	
Result	Qualification	Grading Standard
А	Qualified Trainer	2 subjects >=90 and
		4 subjects >=80
В	Qualified Assistant Trainer	3 subjects >=80 and
		4 subjects >=70
С	Not qualified	Average score ratio >= 60 and
	Follow-up Training (Lecture) is necessary	fail of one subject to be qualified
D	Not qualified	Average score ratio >= 60
	Follow-up Training (Lecture & Hands-on) is necessary	but not C
E	Not qualified	Average score ratio >=50 and < 60
	Follow-up Training (Lecture & Hands-on & Basic Electricity) is necessary	
F	Not qualified	Average score ratio < 50
	Additional Training (Beginner's level) is necessary	

Table 3 Grading Standard

2) Solar PV engineers' training

After the pre examination, trainers disclose the score to participants to let them understand their knowledge level and areas for improvement. Also, trainers can understand their knowledge level before training and reflect to their training.

Same with the post examination, trainers disclose the score to participants with the score of pre examination utilizing the evaluation sheet. From the evaluation sheet, the effectiveness of the training can be evaluated and participants can understand which subject is required for improvement.

Example of evaluation sheet is provided in ANNEX 4 "Evaluation Sheet for PV Trainer or PV Engineer"

7 AMENDMENT OF THE MANUAL

The DOE shall review this manual annually, and amend it, if necessary, according to the surrounding circumstances in rural electrification of the country. The amended manual shall be fully authorized among the DOE and approved by Director of Renewable Energy Management Bureau of the DOE.

ANNEX 1 : Components of Solar PV Training Course

Components of Solar PV Training Course

1. Introduction

Topics	Session Guide	Training Approach	Contents
Introduction	Participants will give a self-introduction one by one. The trainer will introduce the background and purpose of this training. Schedule and purpose of this training will be explained	 Rituals Self introduction Lecture	 Background Present Issue of Solar power Purpose of this training Schedule & Announcements

2. Lecture

Topics	Session Guide	Training Approach	Contents
Topic 1 Basic of Solar PV System	This topic covers the knowledge on basics of Solar PV system. The trainer will explain how to generate electricity from solar PV system and the applications of PV systems such as SHS, BCS, Mini Centralized System and Centralized System. Also the trainer will explain the meaning of peak load, power consumption and available power. Discussion on common trouble and troubleshooting are also useful for participants. Exercises should be used to improve the level of understanding.	LectureExercise	 Electricity from Solar Energy Feature of Solar PV System Site selection SHS (Solar Home System) BCS (Battery Charge Station) Centralized System (Mini, 10kW ~) Available Power Peak Load and Daily Power Consumption Common Trouble & Trouble Shooting Exercise
Topic 2 Basic of Electricity	This topic covers the knowledge on basic electricity and basic calculation skill of electrical circuit. The trainer will explain the meaning of units (V, A, W, Wh) and how to use circuit laws such as "Ohm's Law" and "Kirchoff's Law" showing examples. These basic knowledge are required for a PV engineer. Also the trainer will explain the meaning of the voltage drop and how to calculate it. In a small PV system which is designed at low voltage such as 12V and 24V, the voltage drop has to be taken into consideration. Exercises should be used to improve the level of understanding.	LectureExercise	 Voltage, Current, Resistance, Power AC and DC Ohm's Law, Power Law Kirchhoff's Law Power and Energy Peak load and Daily Power consumption Voltage Drop Calculation of Voltage Drop Specification of Voltage Drop Exercise
Topic 3: Solar Energy	This topic covers the knowledge on solar energy. The trainer will explain the meaning of technical terms such as Insolation, Peak Sun Hours and Irradiance. Also the trainer will explain the no-shade time and effect of tilt angle.	• Lecture	 Insolation Peak Sun Hour Tilt Angle Example of effect by various tilt angle No-Shade Time

Topic 4: PV Module & IV and PV Curve	This topic covers the knowledge on PV module and I-V curve. The trainer will explain the type and feature of PV module. I-V curve is the most important data needed when acquiring a PV module. The trainer will explain the characteristic of I-V curve in details. Series & parallel connections and effect of shadow will further expand the PV engineer's knowledge. Trainer will explain the role of Bypass diode and blocking diode. Exercises should be used to improve the level of understanding.	LectureExercise	 PV module Type of PV Module I-V and P-V Curve Characteristic of IV Curve Series & Parallel Connection Output of PV Module Bypass Diodes & Blocking Diodes Effect of shadow Operation point Exercise
Topic 5: Battery	This topic covers the knowledge on battery. The trainer will explain the type and features of lead-acid battery. The profile of battery is an important data to understand the state of charge of the battery. Also, the trainer will explain the battery capacity, cycle life, how to read capacity and how the cycle life is pre-determined. In addition, the trainer will explain the maintenance and usage method of battery. Battery is a key component in a PV system. To understand the maintenance and usage method correctly is necessary to a PV engineer. Exercises should be used to improve the level of understanding.	LectureExercise	 Common Sense Type of Lead-acid Batteries Profile of Battery Voltage Indicator of State of Charge Charging Efficiency Cycle Life, Capacity, Discharge Rate Maintenance of Electrolyte Maintenance of Electrode Maintenance of Cell Voltage Battery Size vs Over Use Series and Parallel, Inter-Connection Exercise
Topic 6: Charge Controller	This topic covers the knowledge on charge controller. The trainer will explain the type, features and function of charge controller. There are three types of charge controller and the PWM type is currently the most widely used. Set point voltage such as HVD and LVD and status of C/C at set point voltage should be understood. Exercises should be used to improve the level of understanding.	LectureExercise	 Function of Charge Controller Type of Charge Controller Status of C/C, Set point voltage Connecting Sequence Additional functions Do you know? Exercise
Topic 7: DC Light	This topic covers the knowledge on DC Light. The trainer will explain the type and features of DC Lights such as CFL, CCFL, halogen light and LED.	• Lecture	Compact Fluorescent LightDC Fluorescent LightDo you know?
Topic 8: Inverter	This topic covers the knowledge on Inverter. The trainer will explain the type and features of inverter for SHS.	• Lecture	Inverter for SHSOutput WaveformDo you know?

Topic 9:	This topic covers the knowledge of Maintenance.	• Lecture	General Maintenance
Maintenance	The trainer will explain the general maintenance of PV system.		
Topic 10: Inspection & Monitoring	This topic covers the knowledge on Inspection and Monitoring. The trainer will explain the necessity of inspection and how to inspect PV system. Understanding system parameters are necessary to inspect PV system correctly and the skill to analyze PV system condition using the system parameters is required in a PV engineer. Also the trainer will show the example of system condition and let trainee think. Exercise should be used to improve the level of understanding. (Exercise 8)	• Lecture	 Inspected & Approved, Why?? System Parameters Measuring equipment Status of C/C Status of system How much is the load power (W)? Measuring points (Centralized) Specific Gravity Daily Usage Time of loads (SHS) Overuse Peak load & Total load (Centralized) Exercise
Topic 11: Troubleshooting	This topic covers the knowledge on troubleshooting. The trainer will explain the examples of normal troubles and causes of troubles occurring in each PV system. It is necessary to find the right cause or causes of trouble in order to administer the right troubleshooting procedure. To discuss the causes and the countermeasures in the group activity is an effective way to expand trainee's knowledge. Also, the trainer will explain how to check and countercheck the causes of troubles.	LectureGroup activity	 IV and PV Curve Characteristic of IV Curve Series & Parallel Connection Effect of shadow How to measure I-V Curve How to draw I-V and P-V Curve Operation point Exercise
Topic 12: Procurement	This topic covers the knowledge on Procurement. The trainer will explain the specifications of main components and measuring instruments to be used in a PV project and how to read data sheet of materials.	• Lecture	 Inspection & Monitoring Inspected & Approved, Why?? Status of C/C Exercise
Topic 13: Design of PV system	This topic covers the knowledge on system design method of PV system. The trainer will explain what data is needed to design and how to design a PV system. Exercise of system design is more effective.	LectureExercise	 Inspection & Monitoring Inspected & Approved, Why?? Status of C/C Exercise
Topic 14: User training	This topic covers the knowledge on User Training. The trainer will introduce the training materials used in actual project and explain the key points of user training. Role-playing of user training is effective to expand the level of understanding of the trainees.	LectureRole playing	 Inspection & Monitoring Inspected & Approved, Why?? Status of C/C Exercise

2. Hands on Training

Topics	Session Guide	Training Approach	Handouts
Topic 1:	This topic covers the skills on how to use measuring instruments.	 Individual activity 	• Data sheet
How to use	The trainer will explain the specification of measuring instruments and how to use	• Measuring	
Measuring	them. After explanation, the trainee will measure the parameters using the		
Instruments	instruments individually and record the data into the data sheet.		
Topic 2:	This topic reviews the circuit laws and voltage drop learned in basic of electricity.	 Group activity 	• Data Sheet
Measuring of	The trainees will calculate the values at the designated points by using circuit laws,	 Calculation 	
Electrical Circuit	and then trainees will measure the values at the same points to confirm if both	 Measuring 	
	values are the same.		
Topic 3:	This topic reviews the functions and operation condition of C/C.	 Group activity 	• Data Sheet
Function Check of	The trainers will explain how to check function of C/C. After explanation, trainees	• Measuring	
C/C	will check the protective function of C/C by using test instruments. It is important		
	to understand how switches change when the C/C has reached HVD or LVD.		
Topic 4:	This topic reviews the inspection method of a PV system. The trainers will explain	 Group activity 	• Data sheet
Inspection of SHS	how to inspect a PV system. After explanation, trainees will check the PV system	 Inspection 	
	by measuring the system parameters during operation. It is important to understand		
	the meaning of system parameters.		
Topic 5:	This topic covers monitoring method of existing PV system. The trainees will be	 Group activity 	• Monitoring sheet
Monitoring of	instructed how to conduct monitoring using the monitoring sheet. The trainees will	 Monitoring 	
existing PV	conduct monitoring of existing PV system at the site and evaluate the system status		
system	from monitoring results.		
Topic 6:	This topic covers measurement of I-V curve and what are the parameters affects I-V	 Group activity 	• Data sheet
Measuring of I-V	curve.	• Measuring	• Graph paper
Curve	The trainers will instruct how to measure I-V curve. The trainees will measure I-V		
	curve using test instrument and record the data into data sheet. After measuring, the		
T	trainees will arrange and process the data.	<u> </u>	
Topic 7:	This topic covers the characteristic of PV output.	• Group activity	• Data sheet
Measuring of PV	The trainees will measure PV output by changing direction and tilt angle of PV module and understand how PV out put changes by those affects.	• Monitoring	
module output	module and understand how PV out put changes by those affects.		.
Topic 8:	This topic covers how to conduct user training at the site	 Practical training 	• User training text
User training	The trainer and/or trainees will prepare the materials for user training in advance		
	and conduct user training at the site.		

ANNEX 2 : Standard Training Curriculum for PV Trainer and PV Engineer

Standard Training Curriculum for PV Trainer

Date	Type of Training	min.		Subject	Syllabus	Text page	Place
-		30		Introduction	Purpose of training, Contents of training, Notice, Self-introduction		
		60	L1	Basic of solar PV system	Type of solar PV system, Case example Introduction of PV systems introduced at BEP	P.1-16	
	Lecture	40	L2	Safety	Risk assessment, Hazard Safety management	P.17-24	
1st	& Hands-on	150	L3	Basic of Electricity	Electrical term, Electrical law, Power & Energy Voltage drop	P.25-44	Room
		120	H1	Measuring of Electrical Circuit	Measuring of voltage and current Check the voltage drop		
		60	L4	Solar Energy	Irradiance, Insolation, Peak sun hours Tilt angle, affect of shading		
		20		Review of previous day's lesson			
		140	L5	PV module & I-V Curve	Type, I-V curve, Output, Bypass diodes and blocking diodes, Effect of shadow	P.55-78	
		100	L6	Battery	Type, Profile of battery voltage, Indicator of state of charge, Specific gravity, Maintenance	P.79-104	
Que el	Lecture	100	L7	Charge Controller	Function, Type, Status of C/C, Set point voltage, Connecting sequence, Additional function	P.105-115	Deere
2nd	& Hands-on	10	L8	DC Light, Inverter	Characteristic, specification	P.116-119	Room
		5	L9	Inverter	Characteristic, specification	P.120-123	
		5	L10	Maintenance	General maintenance	P.124-125	
		80	H2	Function check of C/C	Confirmation of switching operation		
		20		Review of previous day's lesson			
		160	L11	Inspection & Monitoring	Inspected & Approved, System parameters Measurement instrument, System status	P.126-153	
3rd	Lecture & Hands-on	120	L12	Troubleshooting	Common trouble in a PV system, Troubleshooting Procedures, Case study of troubleshooting	P.154-172	Room
	Hallus-oli	40	L13	Procurement	Battery, PV module, Inverter etc.	P.173-184	
		120	L14	User Training	Technician training for BCS & SHS User training for BCS & SHS		
411	llanda an	300	H3	Monitoring of existing system	How to check PV system, How to arrange data, How to analyze monitoring data		Cha
4th	Hands-on	120	H4	Performance check of PV module	Measuring of Isc and Voc of PV module		Site
		100	L15	Design of centralized PV system			
5 46	Lecture	200	R1	Summarization and review of Training	Group activity, Summarize the results of hands-on training and lecture		Deem
5th	& Review	60	R2	Presentation of training results	Present the training results by group or personal		Room
		100	R3	Q & A, Free discussion	Q & A on overall PV training		
		30		Explanation of examination			
6th	Examination	180	T1	Examination			Room
		15		Closing			

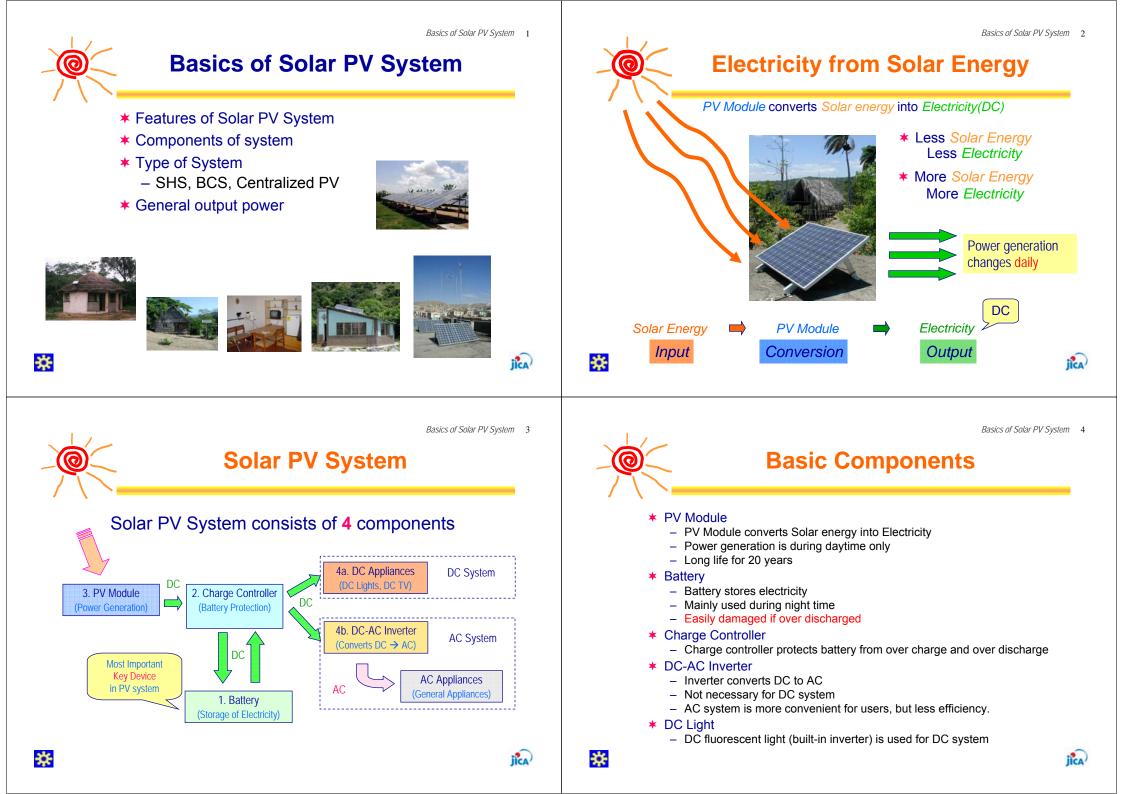
Standard Training Curriculum for PV Engineer

Date	Type of Training	min.		Subject	Syllabus	Text page	Place
		30		Introduction	Purpose of training, Contents of training, Notice, Self-introduction		
		120	T1	Confirmation test	Check knowledge level of participants before training		
	Lecture	50	L1	Basic of solar PV system	Type of solar PV system, Case example Introduction of PV systems introduced at BEP	P.1-16	
1st	& Hands-on	20	L2	Safety	R1sk assessment, Hazard Safety management	P.17-24	Room
		150	L3	Basic of Electricity	Electrical term, Electrical law, Power & Energy Voltage drop	P.25-44	
		90	H1	Measuring of Electrical Circuit	Measuring of voltage and current Check the voltage drop		
		20		Review of previous day's lesson			
		60	L4	Solar Energy	Irradiance, Insolation, Peak sun hours Tilt angle, affect of shading	P.45-54	
and	Lecture	100	L5	PV module & I-V Curve	Type, I-V curve, Output, Bypass diodes and blocking diodes, Effect of shadow	P.55-78	Doom
2nd	& Hands-on	100	L6	Battery	Type, Profile of battery voltage, Indicator of state of charge, Specific gravity, Maintenance	P.79-104	Room
		100	L7	Charge Controller	Function, Type, Status of C/C, Set point voltage, Connecting sequence, Additional function	P.105-115	
		80	H2	Function check of C/C	Confirmation of switching operation		
	Lecture & Hands-on	20		Review of previous day's lesson			
		15	L8	DC Light	Characteristic, specification	P.116-119	
		15	L9	Inverter	Characteristic, specification	P.120-123	
3rd		10	L10	Maintenance	General maintenance	P.124-125	Room
		200	L11	Inspection & Monitoring	Inspected & Approved, System parameters Measurement instrument, System status	P.126-153	
		150	L12	Troubleshooting	Common trouble in a PV system, Troubleshooting Procedures, Case study of troubleshooting	P.154-172	
		50	L13	Procurement	Battery, PV module, Inverter etc.	P.173-184	
		20		Review of previous day's lesson			
	Looturo	120	T2	Confirmation test	Check the level of understanding after training		
5th	Lecture & Review	120	R1	Review of confirmation test	Answer & Question		Room
	Review	180	L14	User Training	Technician training for BCS & SHS User training for BCS & SHS		
		20		Explanation of Hands-on Training			
4th	Hands-on	300	H3	Monitoring of existing system	How to check PV system, How to arrange data, How to analyze monitoring data		Site
401	Hallus-oli	120	H4	Performance check of PV module	Measuring of Isc and Voc of PV module		Sile
		120	R1	Summarization and review of Training	Group activity, Summarize the results of hands-on training and lecture		
6th	Examination	60	R2	Presentation of training results	Present the training results by group or personal		Room
UII		45	R3	Q & A, Free discussion			NUUII
		15		Closing			

ANNEX 3 : Solar PV Technology Training Text

ANNEX 3

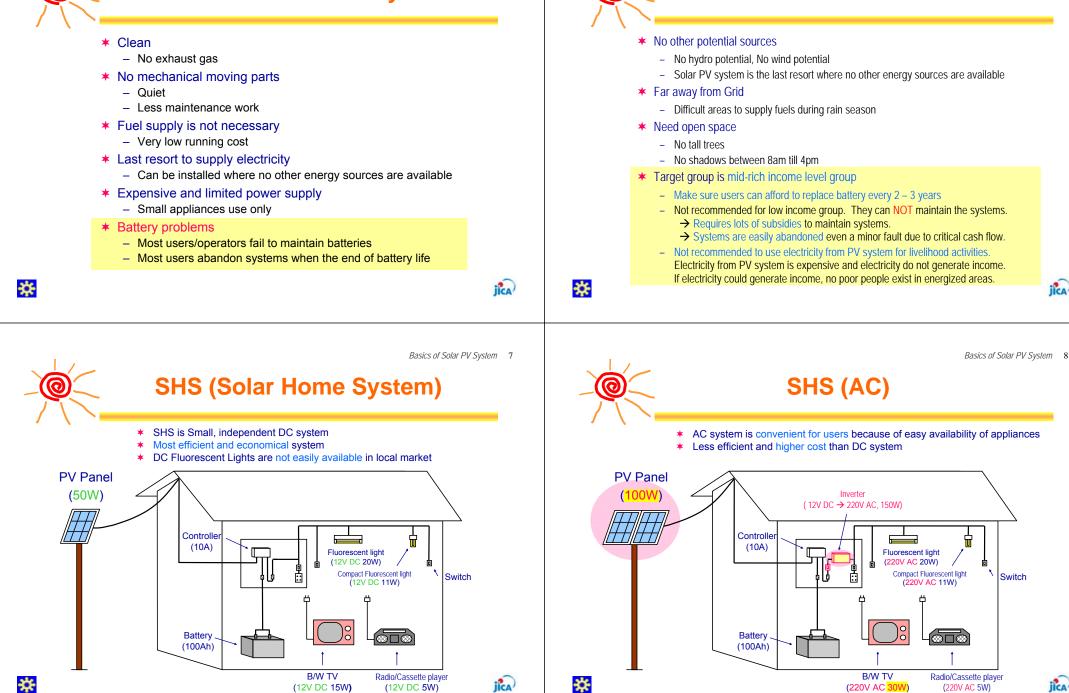
DOE-JICA Project Rural Electrification Project

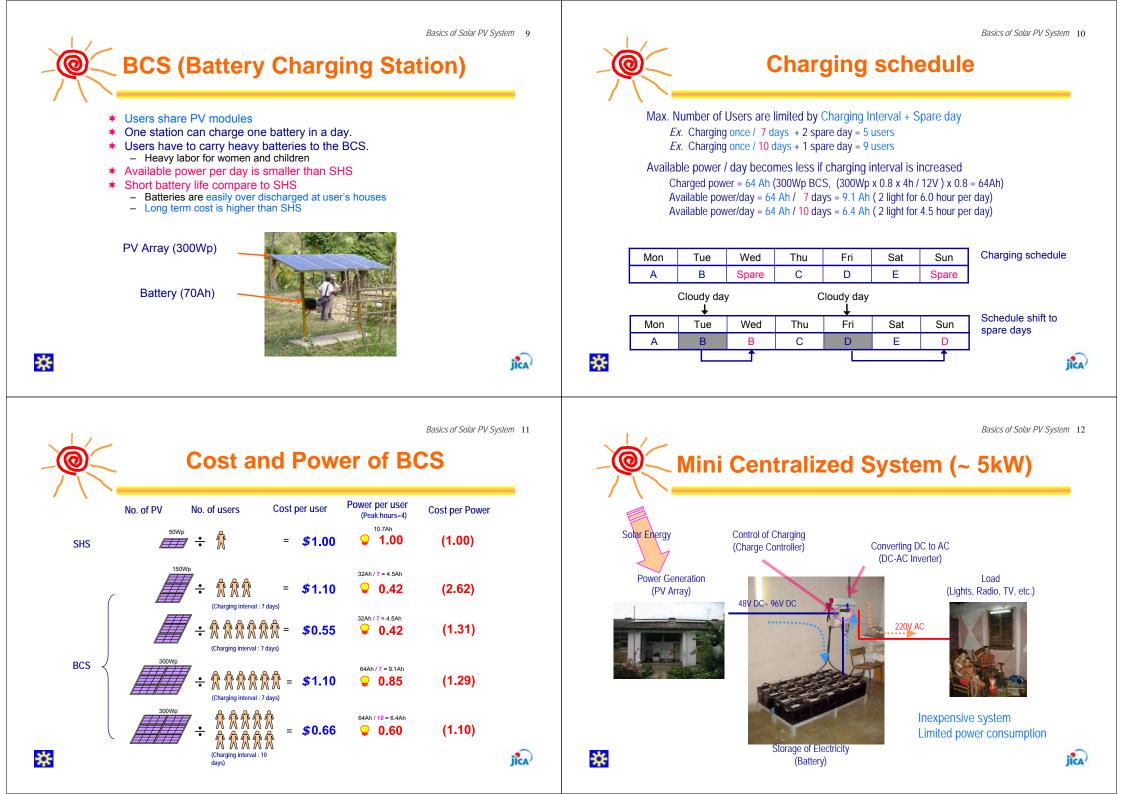


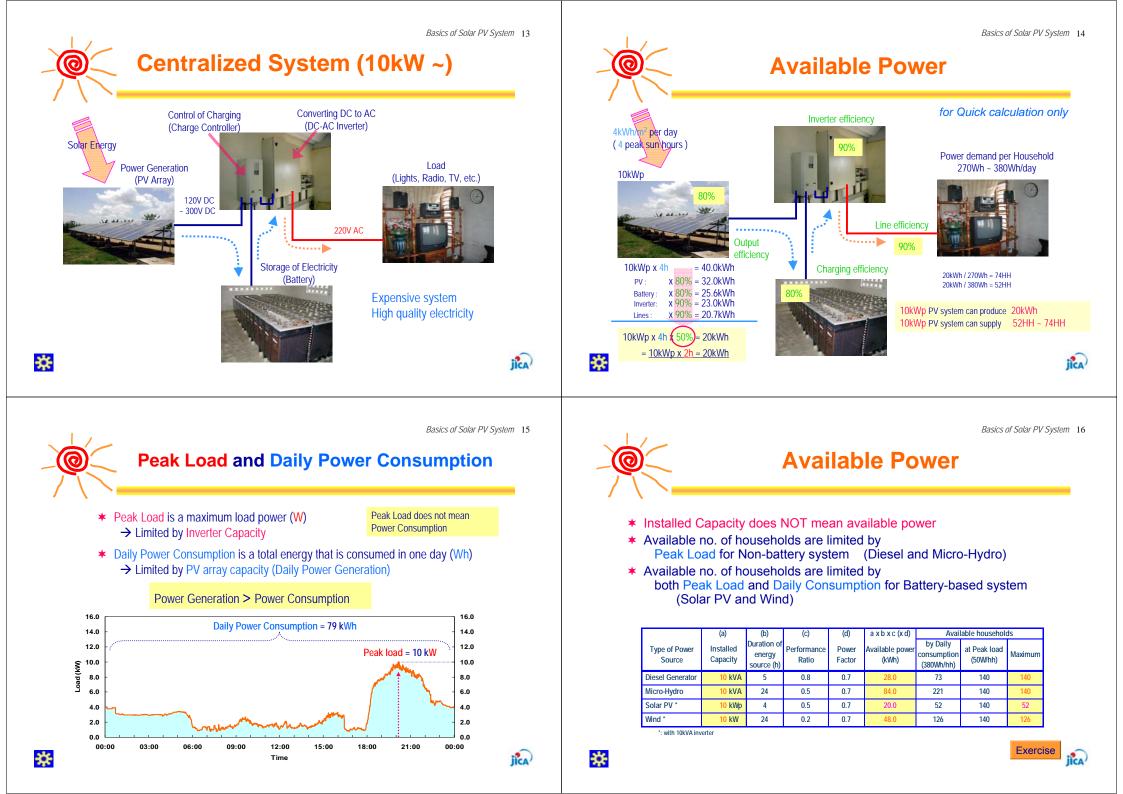
For

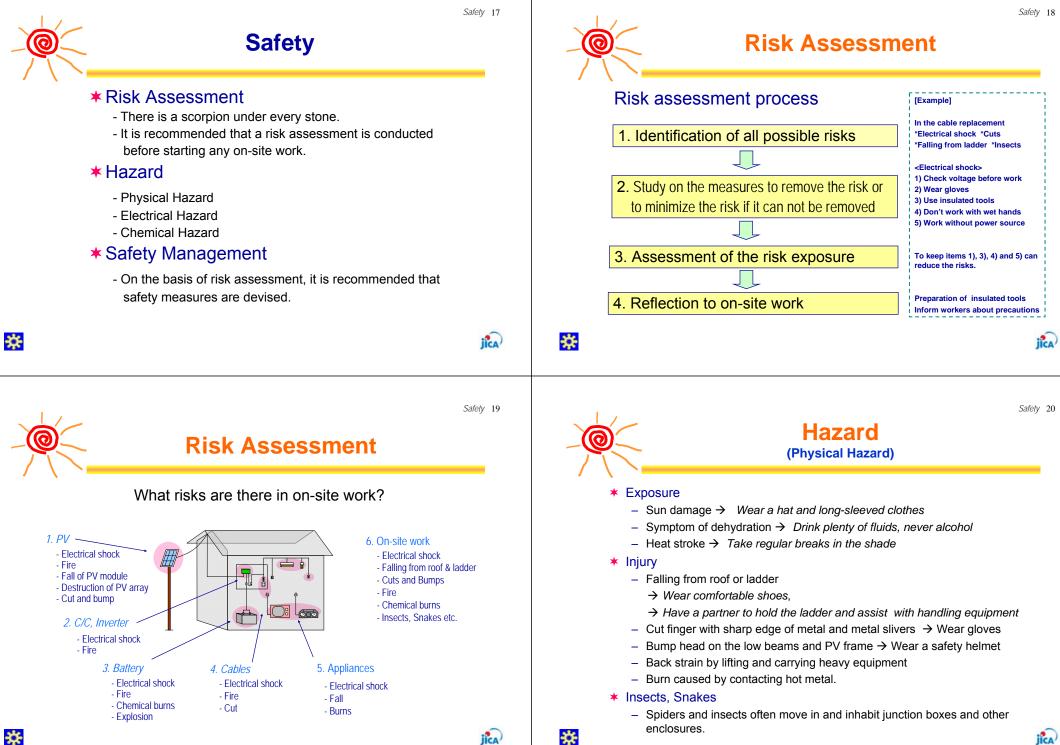
Sustainability Improvement of Renewable Energy Development In Village Electrification

Solar PV Technology Training Text


Basics of Solar PV System 5


iica)

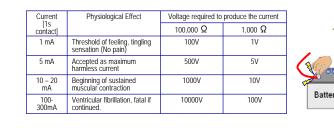

iica)


Site selection

Features of Solar PV system

÷

ilca


Safety 23

ilca

Hazard (Electrical Hazard)

Electrical shock

- The human body acts like a resistor and allows current to pass.
- The value of resistance varies with condition. (Wet: 1,000 Ω Dry: 100,000 Ω)
- The amount of current that will flow is determined by Voltage and Resistance in the current pass.
- Current greater than 20mA may give a serious damage to the body.
- → Always check the voltage between any conductor and any other wires, and to ground.
- \rightarrow Do not touch conductive part by wet hand

*

Hazard (Chemical Hazard)

* Chemical burns by acid

- The lead-acid type battery uses sulfuric acid as the electrolyte.
- Sulfuric acid is extremely hazardous. Chemical burns will occur if the acid makes contact with an unprotected part of the body.
 - \rightarrow Wear non-absorbent gloves and protective glasses.
 - \rightarrow Wash out with plenty of water in case of contact.

★ Gas explosion

- Most battery releases hydrogen gas as a result of the charging process.
- Hydrogen is flammable gas and has an explosion hazard.
 - \rightarrow The battery should be installed in a well-ventilated area.
 - → All flames and equipment that could create a spark should be kept away from the battery.

Hazard (Electrical Hazard)

Electrical sparks and burns

- Electric sparks are caused by short circuit, and it can lead to fire.
 Especially, short circuit of battery is extremely hazard.
 It may give a serious damage to person and PV system.
- \rightarrow Use insulated tools (spanners etc).
- \rightarrow Put covers over the battery terminals.
- → Install fuse.
- Loose connection increases resistance at the connecting part.
 The connecting part becomes the heating element and can cause a fire.
 - \rightarrow Check contact and voltage drop at the connecting part.
- \rightarrow Tighten up screw and clean up contact.
- Insulation failure can cause electric leak and short circuit.
 → Check cable and terminal block periodically.

Switch

Battery

*

iica

Safety Management

* Clothes

 Wear proper clothes for on-site work and ambient environment. (Long-sleeved clothes, Hat, Shoes etc.)

* Safety Equipment

- Prepare safety equipment.
 (Gloves, Protective glasses, Safety helmet, Appropriate ladder,
 - insulated tools. Proper measuring equipment etc.)

★ Work plan

- Check specification and diagram of PV system
- Make work plan which reflect results of the risk assessment.
- Inform the workers about work plan in advance.
- ★ Work at site
 - Confirm risks and safety measures before starting work.
 - Conduct work complying with work plan.

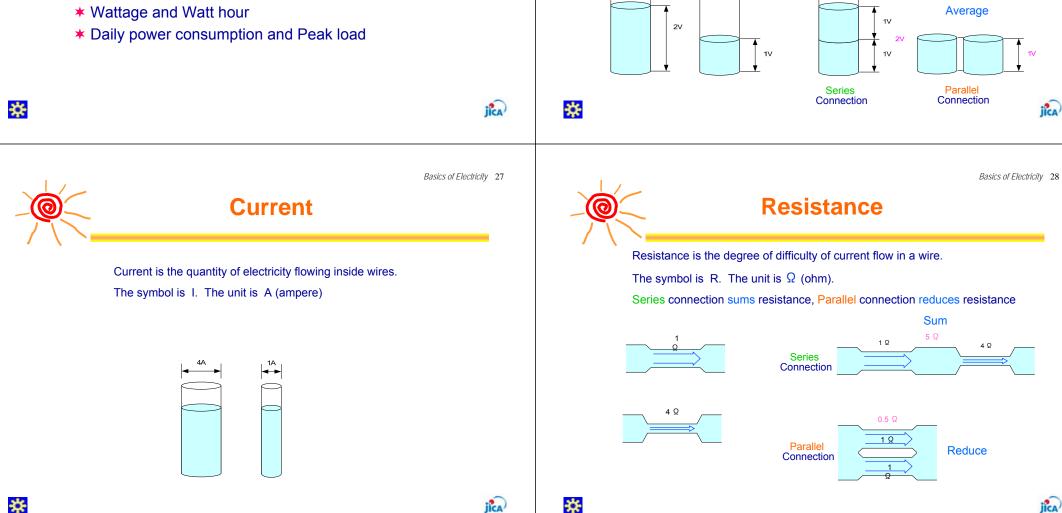
*

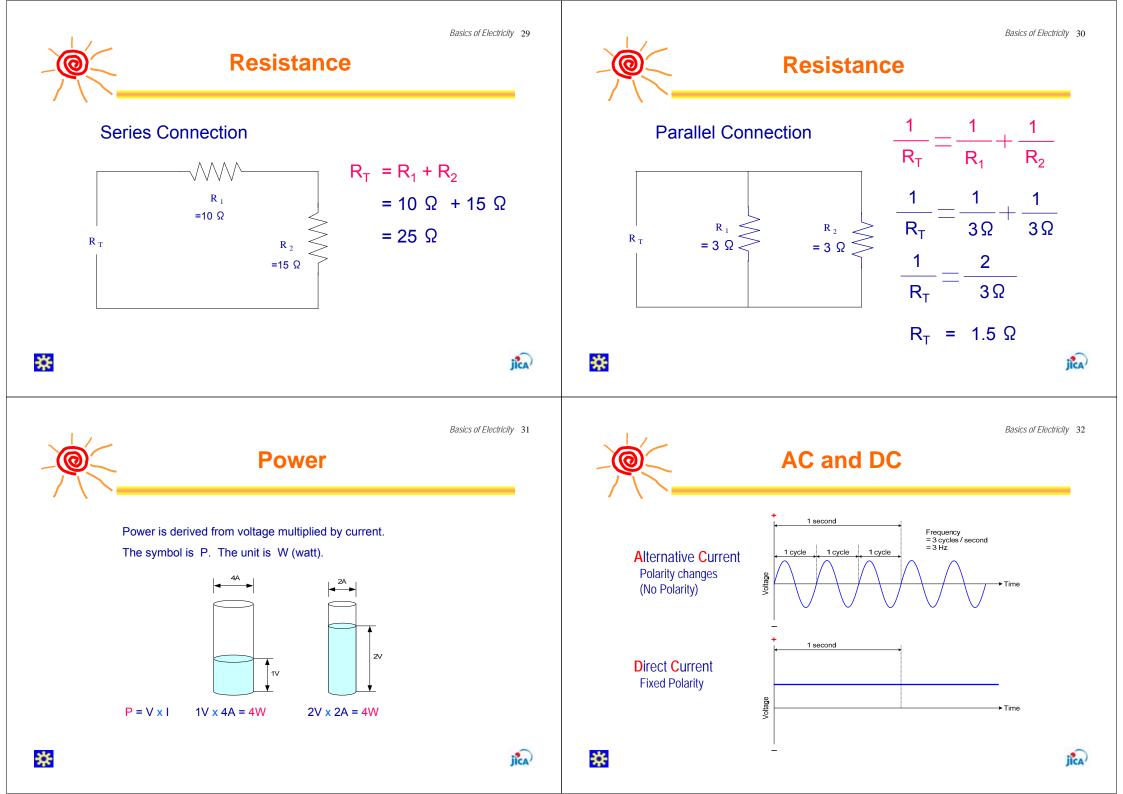
Basics of Electricity 25

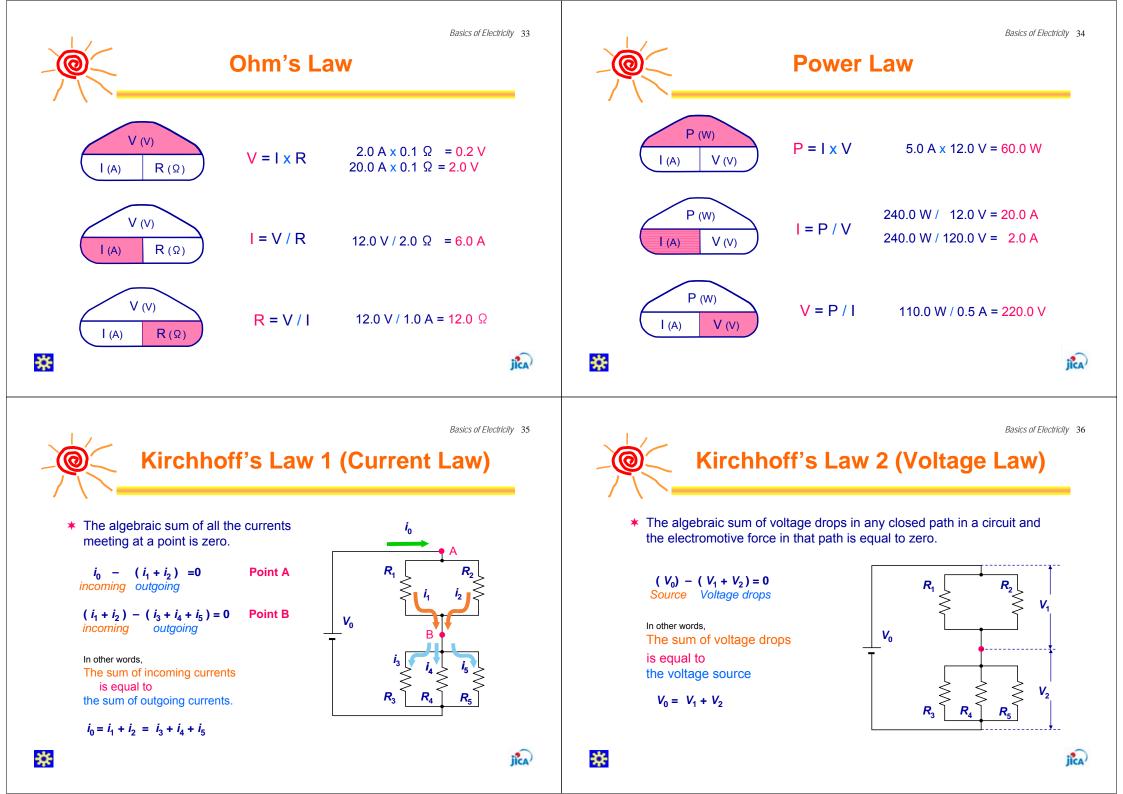
Basics of Electricity

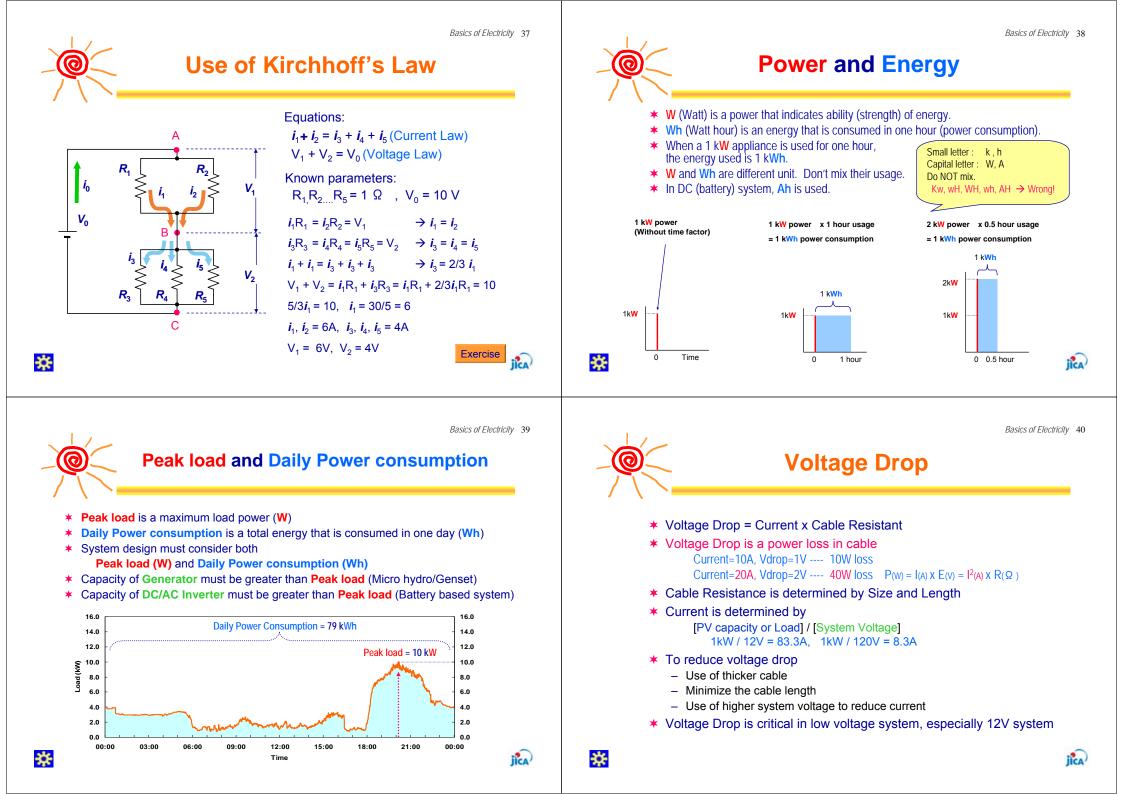
- * Basic elements of electricity
 - Voltage, Current, Resistance, Power, AC and DC
 - Parallel and Series connection
- ★ Calculation
 - Ohm's Law
 - Power Law

Voltage

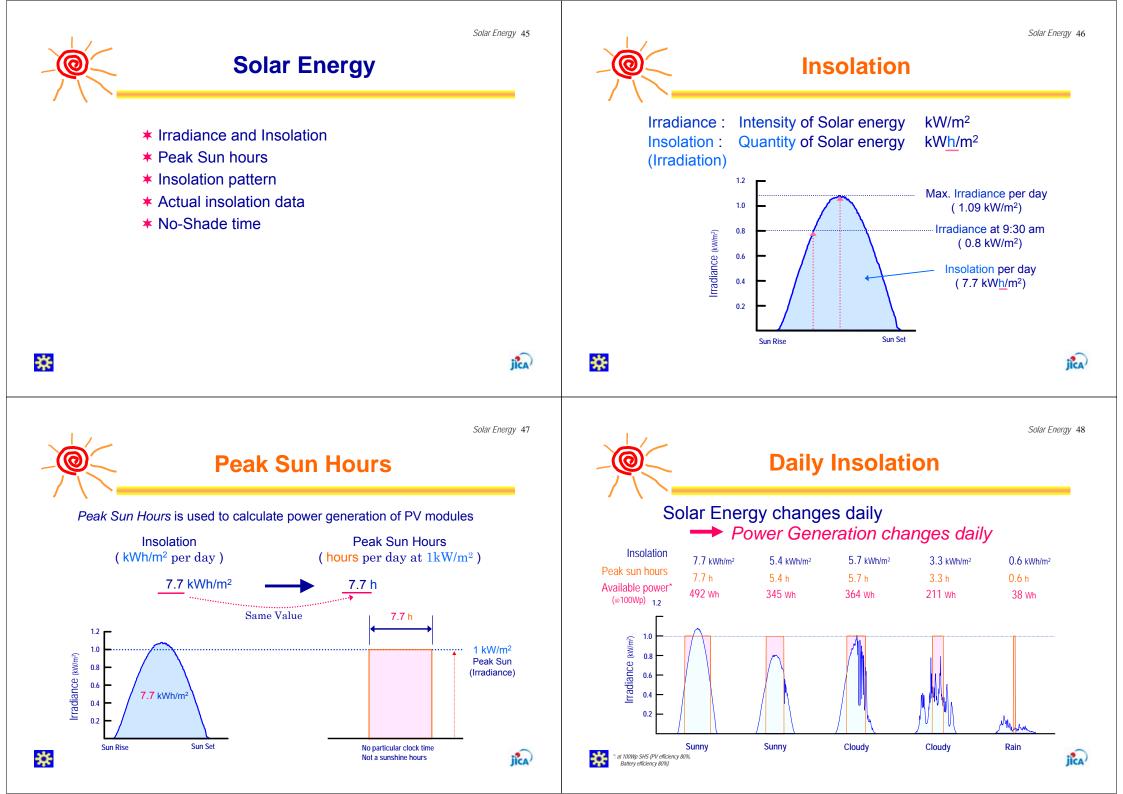

Sum

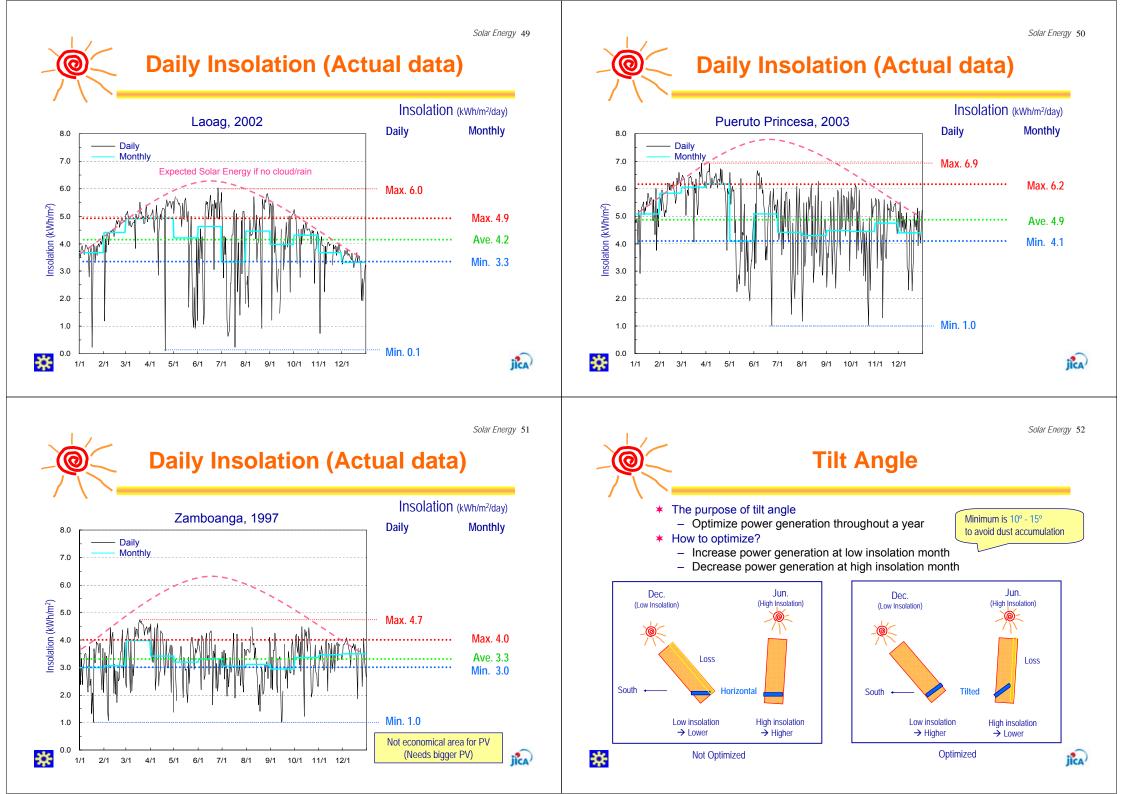

Voltage is the degree of strengths of electricity.


AC mains uses 220V and SHS uses 12V.


The symbol is V. The unit is V (volt).

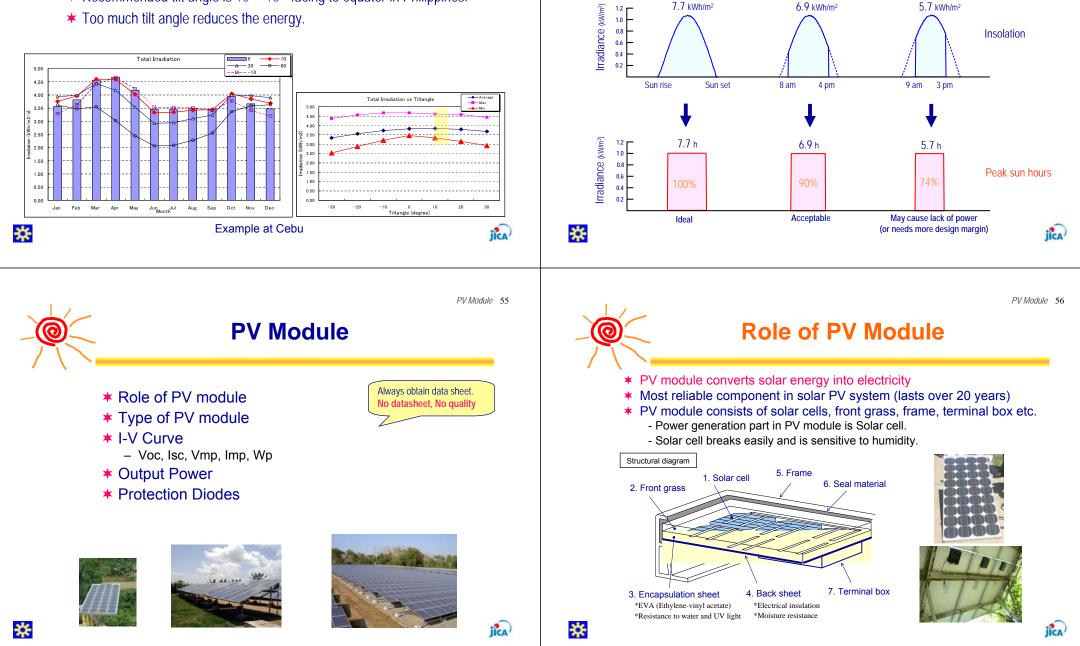
Series connection sums voltage, Parallel connection averages voltage.





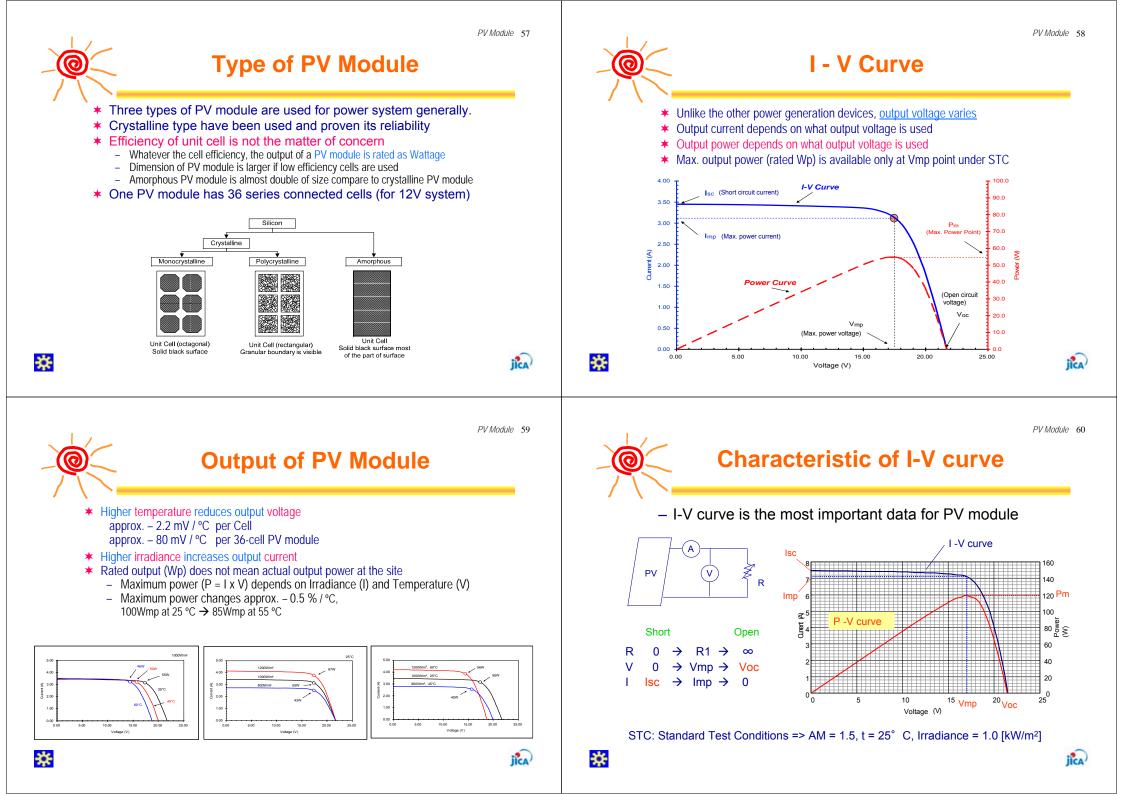
Basics of Electricity 41 Basics of Electricity 42 **Voltage Drop depends on Current Calculation of Voltage Drop** Voltage drop at this part will increase when both a TV and a light ON at the same time. Current consumption : 0.5 A / light Resistance of wire : 0.02 Ω / m V0 SW1:OFF. SW2:OFF Vc = V2 = V3lc = 0Voltage drop of L1 Current of a light Current of a light V2 SW1:ON, SW2:OFF 20m 12 11 Vc > V0 > V1lc = 11 Vc 12.0V Current Vc > V0 = V2L1 of a TV C/C 11.6V Don't forget to 0.5A SW1:OFF. SW2:ON include this distance Vc > V0 = V1|c = |2|lc Voltage drop of L1 $= I(A) \times R(\Omega)$ Vc > V0 > V2= 0.5 A x (20 m x 0.02)SW1:ON, SW2:ON = 0.2 V per wire SW2 Vc >> V0 > V1 lc = 11+12 $= 0.2 V \times 2$ = 0.4 V Vc >> V0 > V2Total Battery V1 \cap SW1 * * jica ilca Basics of Electricity 43 Basics of Electricity 44 **Calculation of Voltage Drop Specification of Voltage Drop** 0 Vdrop1 Vdrop2 Voltage Drop between Battery and C/C is critical 10m 10m * Limitation value should be stated by V instead of % for SHS 5% is 0.56V at 11.1V, 0.60V at 12V, 0.72V at 14.4V 12.0 V L1 → These are critical for 12V system 11.4 V 0.5A 1.0A (0.5A + 0.5A) Exercise Vdrop3 Example of 12V System 20 m Max Vdrop (V) Remarks Section L2 11.2 V 0.5A Larger voltage drop may cause not enough PV - C/C0.5 PV output voltage to charge battery = Vdrop1 + Vdrop2 Voltage drop of L1 Vdrop1 = 1.0 A x (10 m x 0.02 Ω) x 2 = 0.4 V = 0.4 V + 0.2 V Battery – C/C 0.1 C/C controls battery voltage precisely $Vdrop2 = 0.5 A x (10 m x 0.02 \Omega) x 2 = 0.2 V$ = 0.6 V Vdrop3 = $0.5 \text{ A} \times (20 \text{ m} \times 0.02 \Omega) \times 2 = 0.4 \text{ V}$ Voltage drop of L2 = Vdrop1 + Vdrop3 To ensure appliances works till LVD Load - C/C 0.5 - 1 = 0.4 V + 0.4 V Ex: LVD=11.5V, Vdrop=1V, Load=10.5V at LVD = 0.8 V * jica)

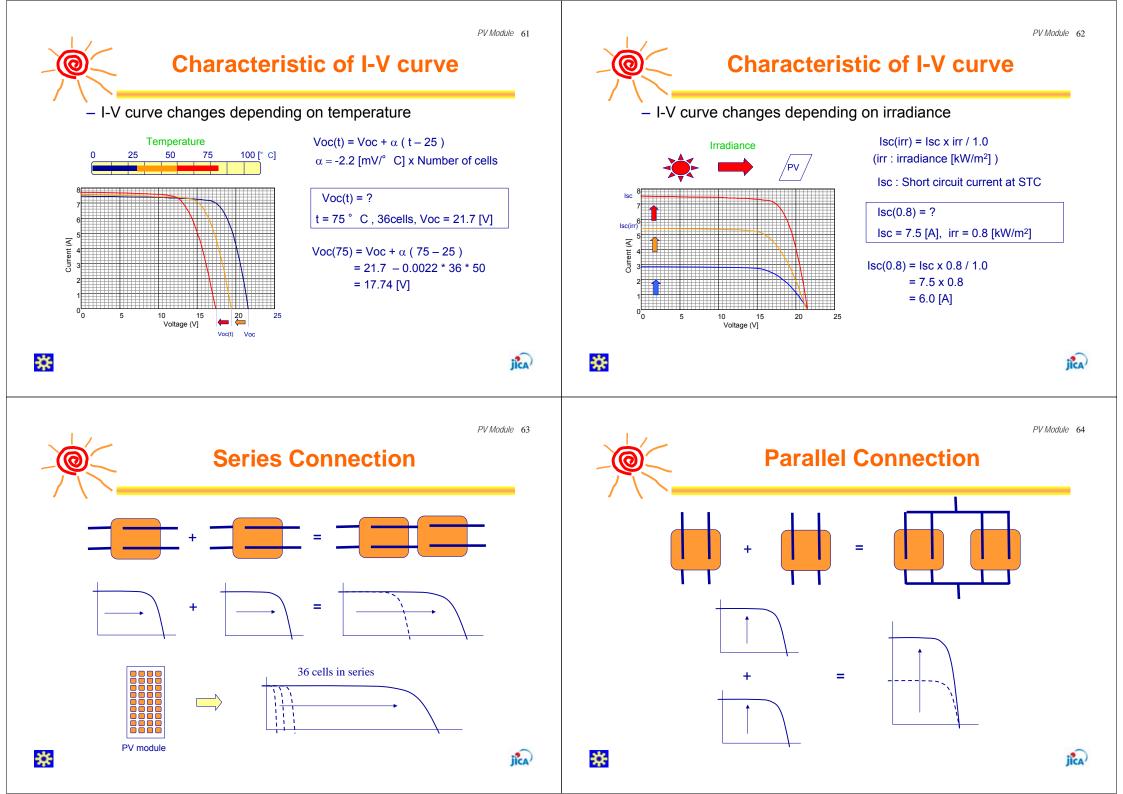
jica)

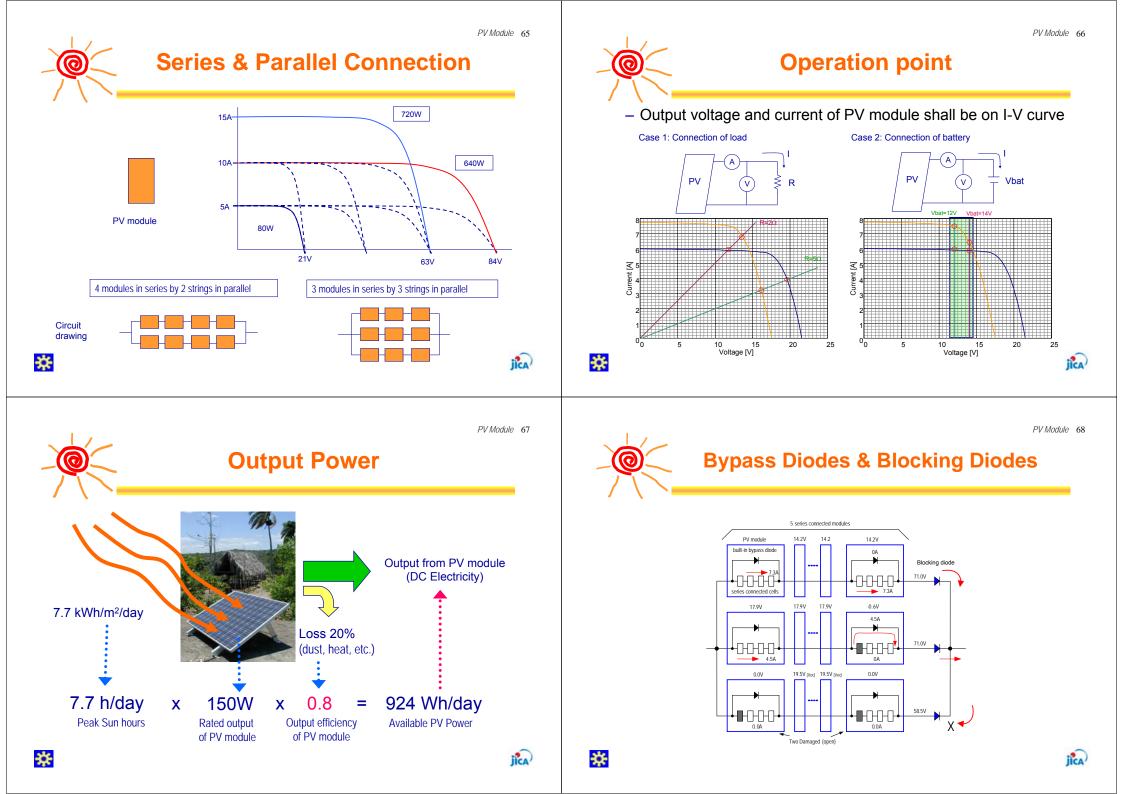


Solar Energy 53

★ Recommended tilt angle is 10° - 15° facing to equator in Philippines.

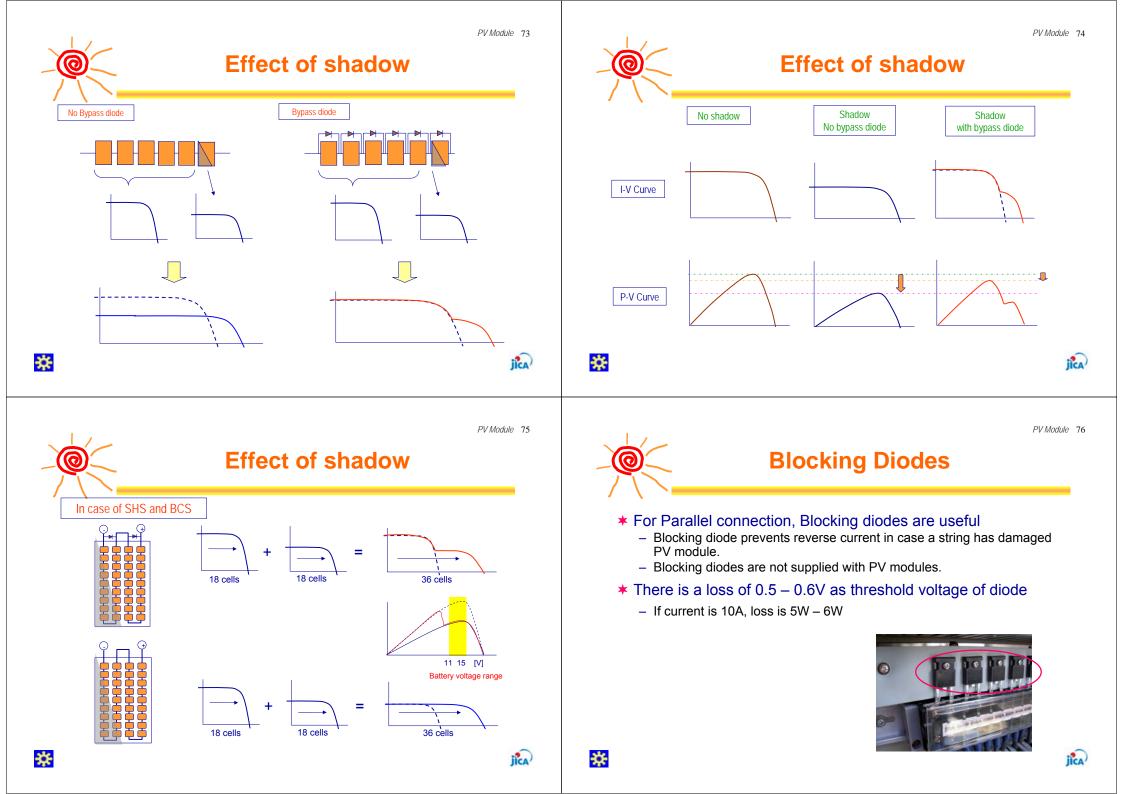

* Too much tilt angle reduces the energy.

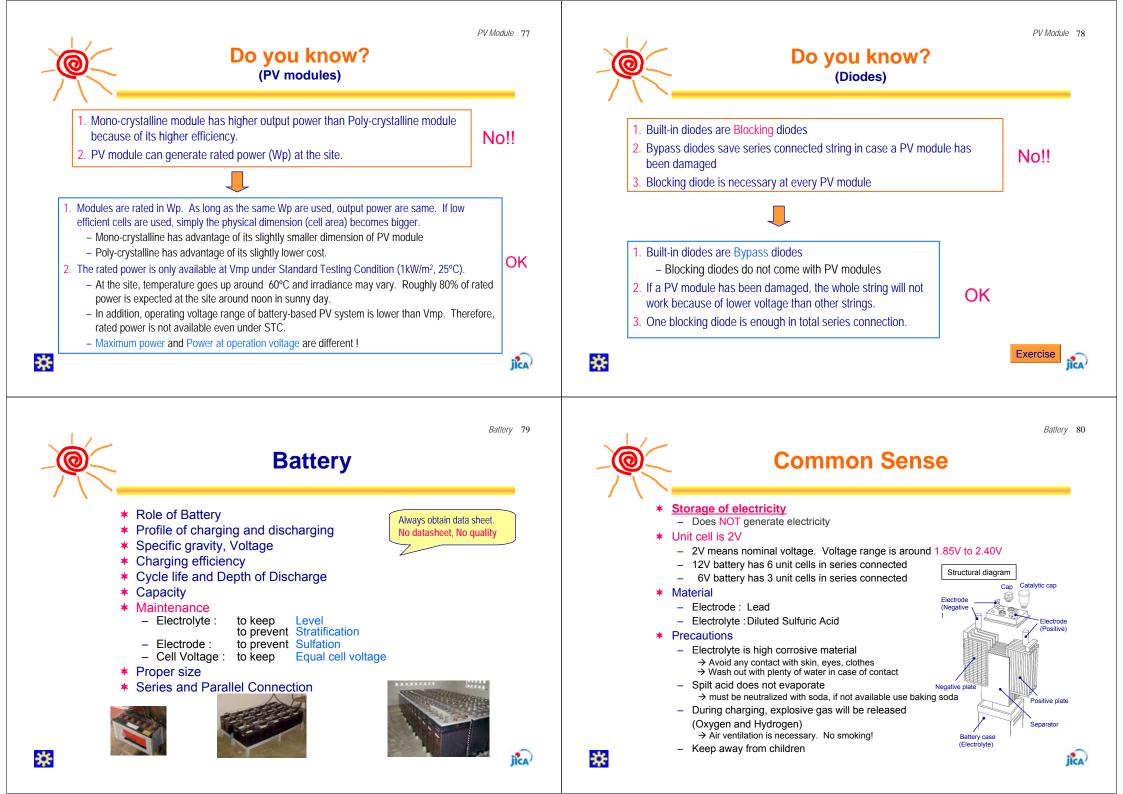



No-Shade Time


6.9 kWh/m²

7.7 kWh/m²

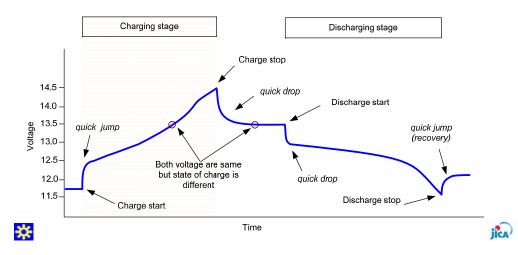


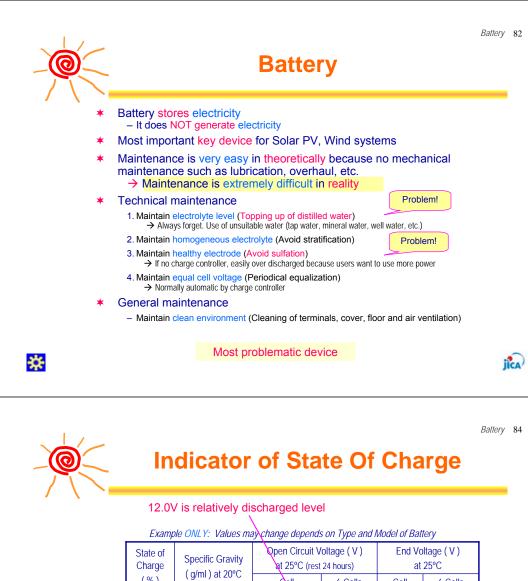


jica)

Battery 81

Type of Lead-acid Batteries

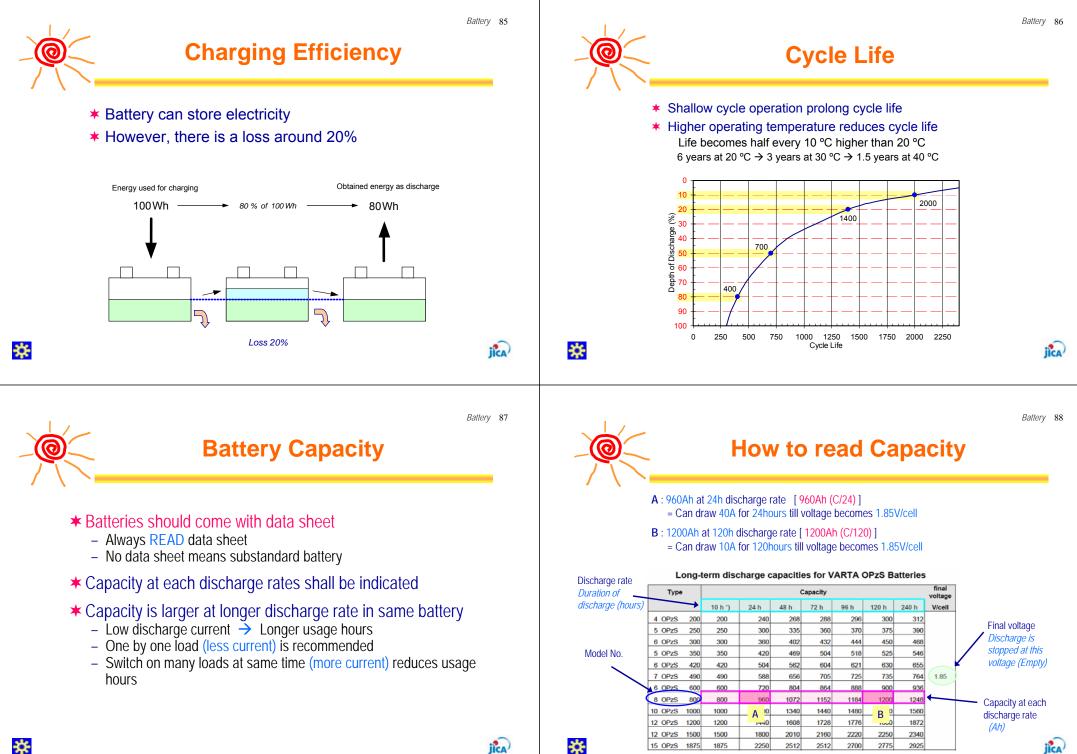

Forget about the terms "Deep Cycle type" and "Shallow Cycle type" HVD. LVD are example only These will confuse you. The operation of solar PV system is *shallow cycle* operation. Industrial Type Automotive Type Available Flooded (Liquid) Available Low cost · Need to top up distilled water • Durable • Durable Acceptable for small application Wide range of capacity Limited range of capacity (~150Ah) (~2000Ah, 2V unit) · Relatively strong against overcharge (HVD ~14.4V) LVD: ~11.7V , HVD: ~14.4V LVD: ~11.5V , HVD: ~14.4V Maintenance free (Liquid) Available Available Easy to handle Acceptable for small application · Recommended for small application · Weak against over charge Good for maintenance free system Good for maintenance free system Need to use lower HVD than flooded Need good charge controller to avoid Need good charge controller to avoid type (~14.1V) overcharge overcharge No boost charging LVD: ~11.7V , HVD: ~14.1V LVD: ~11.5V , HVD: ~14.1V Limited range of capacity (~150Ah) Maintenance free (Gel) Available Sealed Recommended for small application Easy to handle · Weak against over charge Good for maintenance free system N/A · Need to use lower HVD than flooded Need good charge controller to avoid type (~14.1V) overcharge No boost charging LVD: ~11.5V, HVD: ~14.1V ÷. Limited range of capacity (~150Ah)

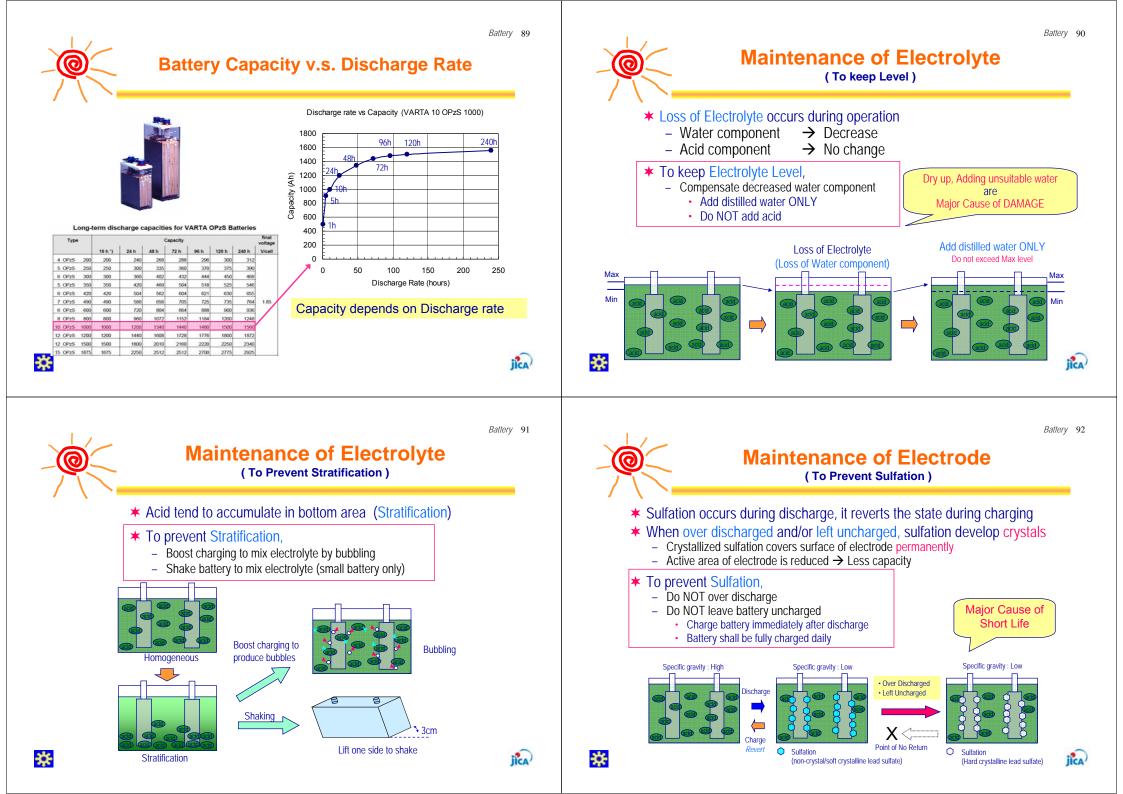

Battery 83

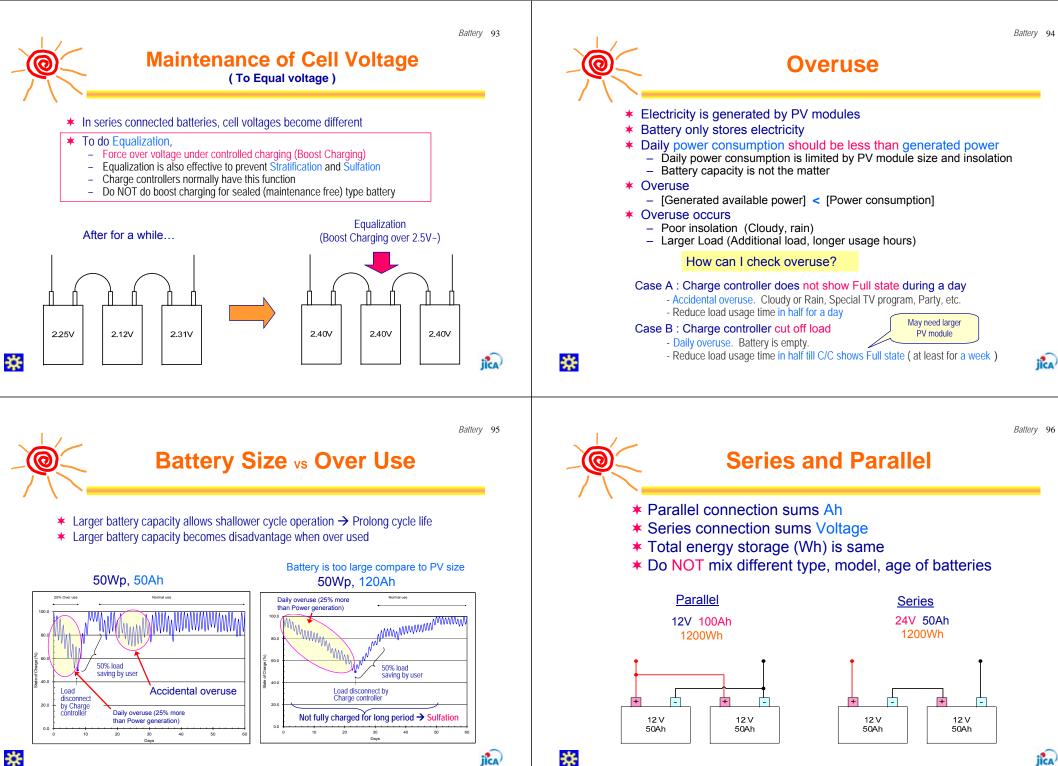
ilca

Profile of Battery Voltage

★ Voltage is always different at each stage

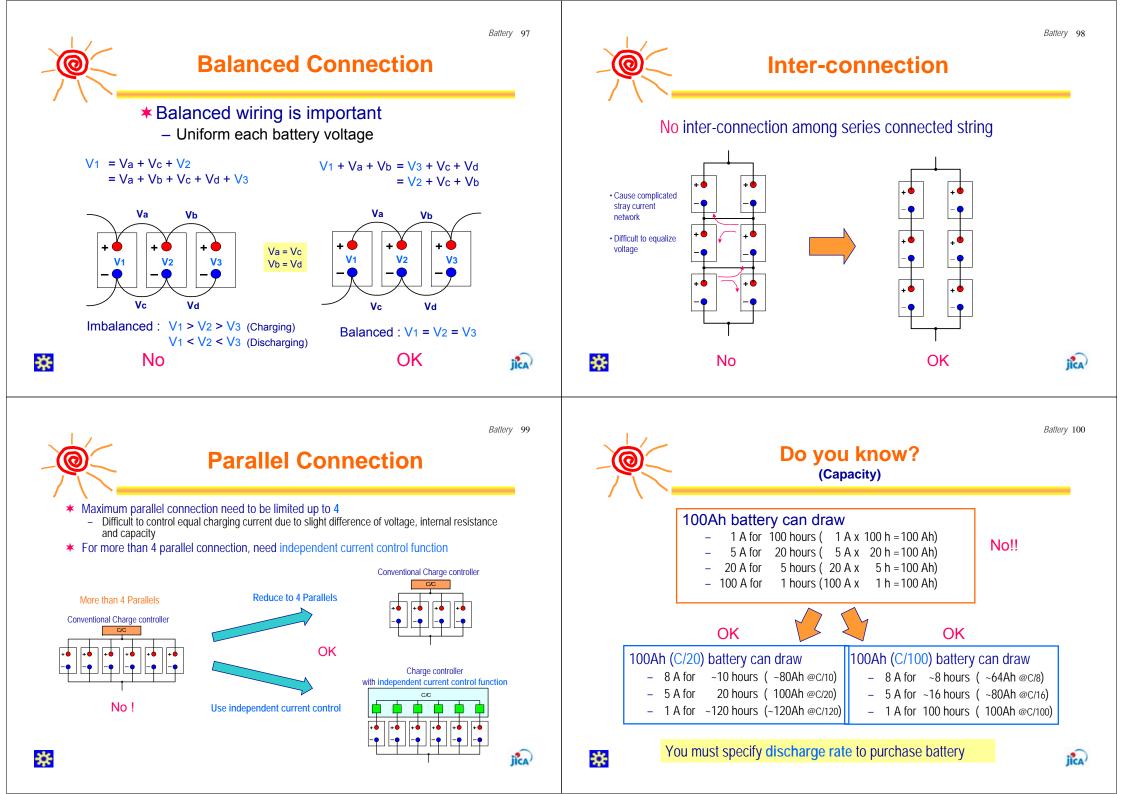


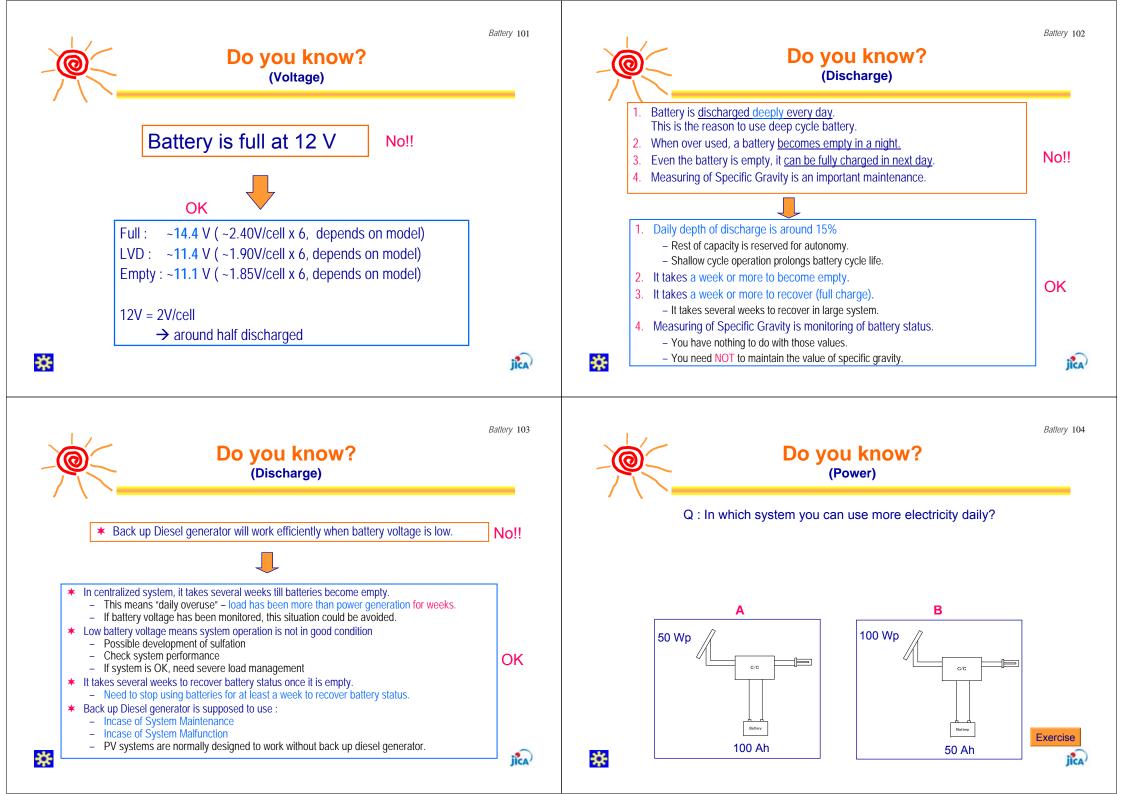


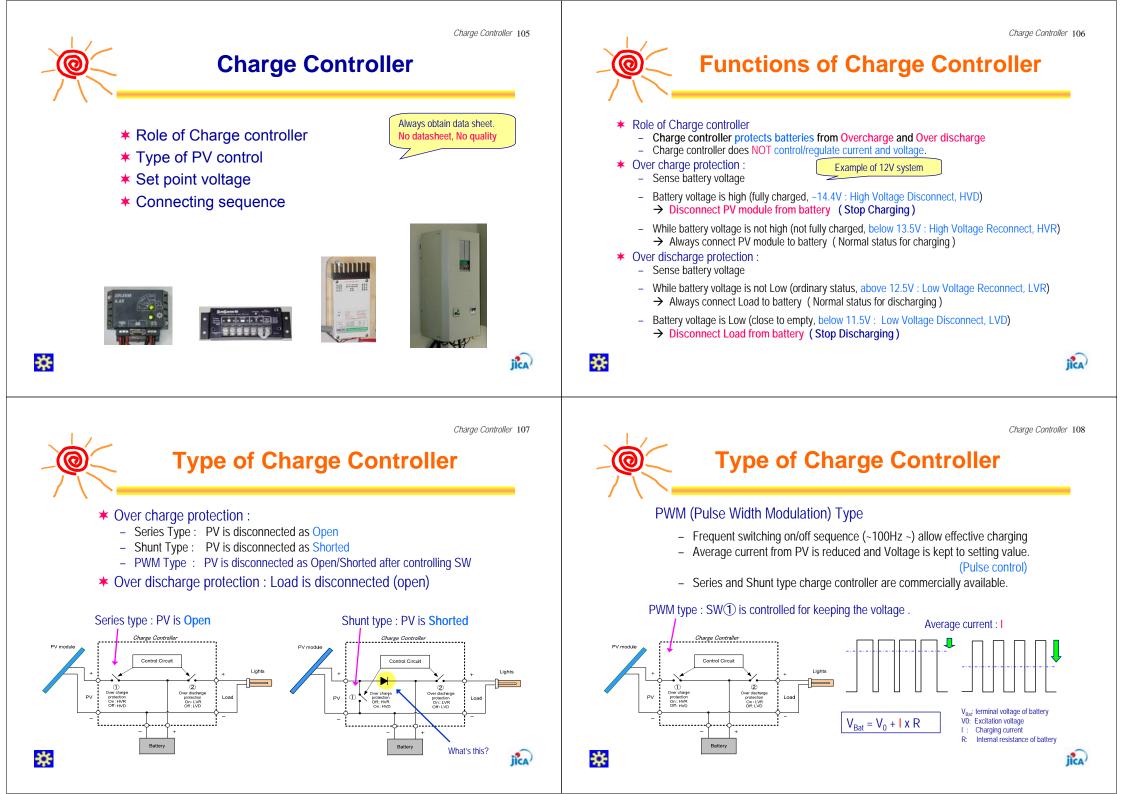

12.0V is relatively discharged level						
	Examp	le ONLY: Values ma	y change depends	s on Type and I	Model of Bai	ttery
	Charge Specific Gravity		Charge Specific Gravity at 25°C (rest			oltage (V) 25°C
	(%)	(g/ml) at 20°C	Cell	6 Cells	Cell	6 Cells
	100	1.280	2.12	12.73	2.40	14.40
Charged 1.250	90	1.261	2.10	12.62	1	
1.200	80	1.241	2.08	12.50		
\wedge	70	1.220	2.06	12.37	Non linea	nr
	60	1.198	2.04	12.24	Different	in / Discharging _
	50	1.175	2.02	(12.10)	Charging	
	40	1.151	1.99	11.96		
~	30	1.127	1.97	11.81		
1.100	20	1.101	1.94	11.66		
Discharged	10	1.076	1.92	11.51	↓	
2.22.2.1.900	0	1.051	1.89	11.35	1.85	11.10

*

ilca

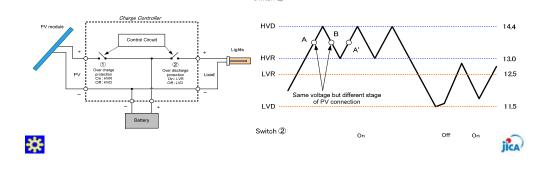






÷

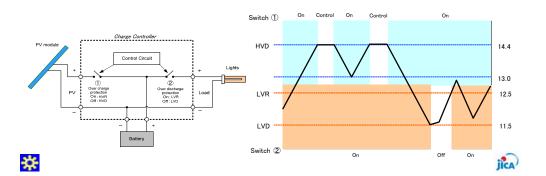
iica)

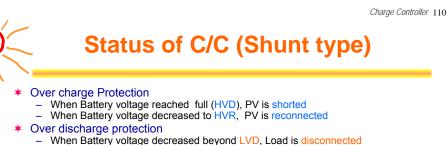

Charge Controller 109

Status of C/C (Series type)

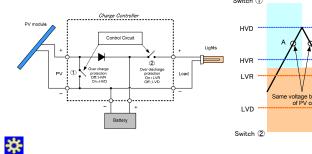
- Over charge Protection
 - When Battery voltage reached full (HVD), PV is disconnected
 - When Battery voltage decreased to HVR, PV is reconnected
- * Over discharge protection
 - When Battery voltage decreased beyond LVD, Load is disconnected
 - When Battery voltage recovered above LVR, Load is reconnected

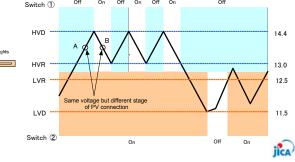
Switch (1


* Very important to know the status of C/C when monitoring/Troubleshooting



Charge Controller 111


Status of C/C (PWM type)


- Over charge Protection
 - When Battery voltage reached full (HVD), SW(1) is controlled
 - When Battery voltage decreased, SW(1) is ON (No HVR)
- * Over discharge protection
 - When Battery voltage decreased beyond LVD, Load is disconnected
 - When Battery voltage recovered above LVR, Load is reconnected

When Battery voltage recovered above LVR, Load is reconnected

Charge Controller 112

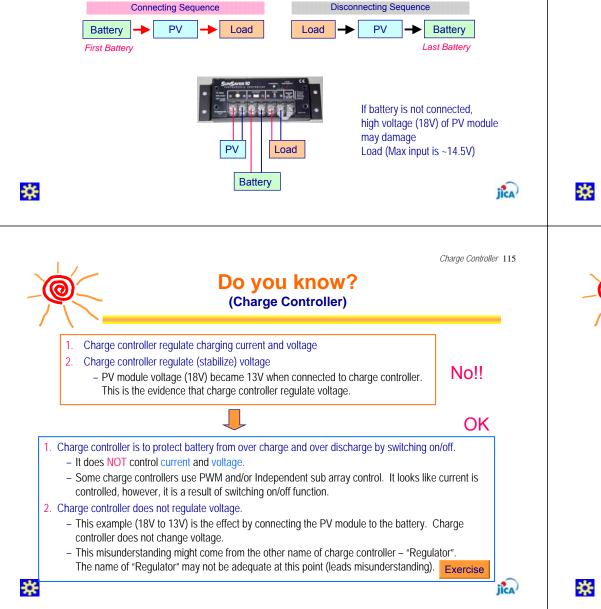
*

Set point voltages

- * Set point voltages are slightly differs by each model
 - Choose right set point voltage with battery
- Temperature compensation is necessary (built-in)
 - Approx. -3mV / °C per cell
 - Approx. -0.18V at 12V battery when 10 °C increased
- For accurate control, Voltage drop between Battery and Charge Controller shall be minimized (<0.1V, <0.05V per line)

Set Point	Automotive	Deep Cycle	David Quala	
@ 20 °C	(Flooded)	(Flooded)	Deep Cycle (Maintenance free)	
HVD	14.4	14.4	14.1	
HVR	13.0	13.0	13.0	
LVR	126	12.6	12.6	
LVD	(11.7)	(11.5)	11.5	

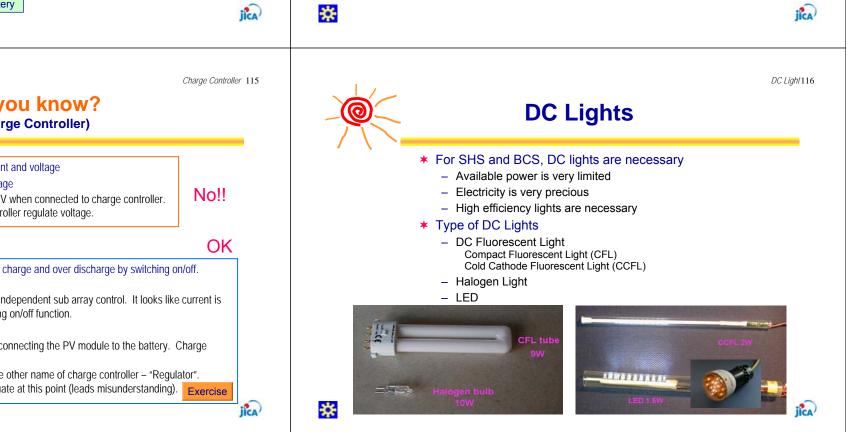
Values are reference ONLY



Charge Controller 113

Connecting Sequence

Connecting / Disconnecting cables to C/C,
 First Battery, Last Battery is the rule of the thumb



Additional functions

Some charge controller have additional function to prolong battery life and efficient charging

Boost charging mode

- To equalize cell voltage, high HVD setting By changing HVD,
- Boost charging mode is triggered automatically (low battery voltage, after several charging cycles, etc.). Once boost charging is completed, it becomes normal mode automatically.
- Do NOT use this type of charge controller for sealed (maintenance free) battery

DC Light 117

ilca

DC Light119

No!!

OK

ilca)

÷

Compact Fluorescent Light

Typical DC light used in SHS and BCS

There is a built-in inverter that converts 12 V DC into some hundreds volts of AC.

The fluorescent lights need AC. The device used in DC fluorescent light "inverts" DC into AC. Sometimes the inverter is called "ballast". However, original meaning of "ballast" is the device normally used in conventional AC fluorescent light. It is a sort of choke coil. It does not change DC to AC.

Do you know?

- 1. Power consumption is rated at tube.
- 2. Halogen bulbs for car can be used as lights
- DC light is much brighter than candle. This is good for reading at night. Children can do homework at night

- Power consumption depends on built-in inverter and tube

 Measure actual power consumption.
- 2. It consume more power than fluorescent light.
- DC light is normally 9 ~ 11W. This gives only around 10~20lx that is not enough brightness for reading (150 lx or more). Reading under this dark condition may develop near sight especially for children.

DC Fluorescent Light

- CFL is the most recommended light at the moment
 - Low cost, Enough brightness at reasonable power consumption
 - The life of tube is around 1~2 years \rightarrow problem of tube supply
- * CCFL is developed as backlight of LCD display.
 - The life of tube is very long (~20,000 hours, more than 10years if used 4hours/day)
 - Free from the problem of tube supply.
- * Halogen lamp is easily available at automobile parts shop
 - Easily available but power consumption is higher than CFL.

* LED light are becoming popular.

- Due to its high cost, only small light (1~2W) are available.
- Brightness is not enough at this small type.
- If the cost becomes low and 10W types are available, LED light mat become main stream for SHS

The combination of maintenance free battery and CCFL / LED lights will make SHS as maintenance free system	Lights	Current (A)	Illuminance at each distance from light (Lux)	
			1 m	2 m
	CFL 9W	0.58	83.0	20.0
	Halogen 10W	0.80	50.0	8.0
*	Candle	N/A	1.2	0.5

jica

Inverter 120

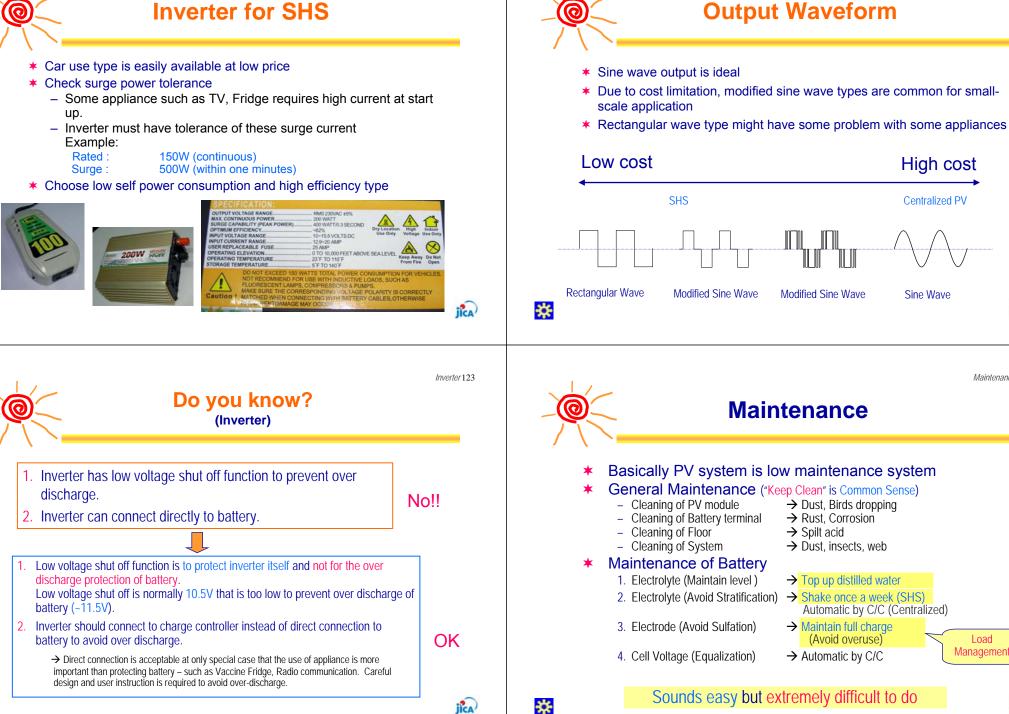
Always obtain data sheet.

No datasheet, No quality

- * Converts DC into AC
- Wide range of capacity
 - 100W ~ 300W ~1kW ~ 5kW (Easily available in market, Inexpensive)

Inverter

- 10kW~ 100kW (Production by order, Expensive)
- Inverters for car use are becoming popular at low price P1000~, 100W
- * Use of inverter is very convenient for users
- Need larger PV panel due to low efficiency of AC system compare to DC system


*

Inverter 121

iica

Maintenance124

*

÷.

Load Management

iica)

Centralized PV

Sine Wave

Maintenance 125 Inspection & Monitoring 126 **General Cleaning Inspection & Monitoring** PV Module * Inspection & Monitoring are the KEY to ensure system - Clean surface reliability & sustainability - Use water, soft cloth - Should be conducted by doubting - Never use detergent - Should be conducted by using measuring equipment ***** Battery - Should be conducted by using 6th sense - Clean spilt acid - Avoid skin contact of acid Must understand Meaning of system parameters ★ Charge Controller - Remove insects & dust Monitoring without understanding of system parameters is useless - Only qualified people can conduct proper monitoring ***** Lights - Clean diffuser cover - Remove insects & dust * ilca ilca Inspection & Monitoring 127 Inspection & Monitoring 128 Inspected & Approved, Why?? Inspected & Approved, Why?? Deep cycle battery is used, Inverter is connected to battery directly but battery selector of C/C is set to car battery

One is 30 degree, the other is flat??

PV panels are facing West

*

jica

÷

Inspection & Monitoring 129

Inspected & Approved, Why??

Corrosion (No grease)

Temperature sensor was cut off

Prime parameters for SHS

High risk of short circuit

ilca

Inspection & Monitoring 131

Inspected & Approved, Why??

Installed behind a big baobab tree...

Why these are approved? Because Inspectors did not know about solar PV system.....

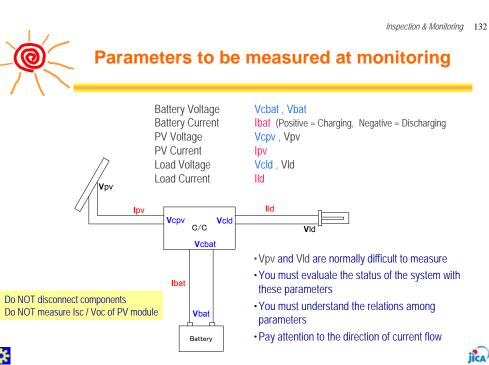
Inspection & Monitoring 130

How they could be inspectors? Because Why???

Inspectors should have :

• Proper Knowledge (Intermediate or Advanced level)

Inspectors


jica

- Good Skills to check System Parameters
- Good Technical Sense Need qualification of

*

*

jica

*

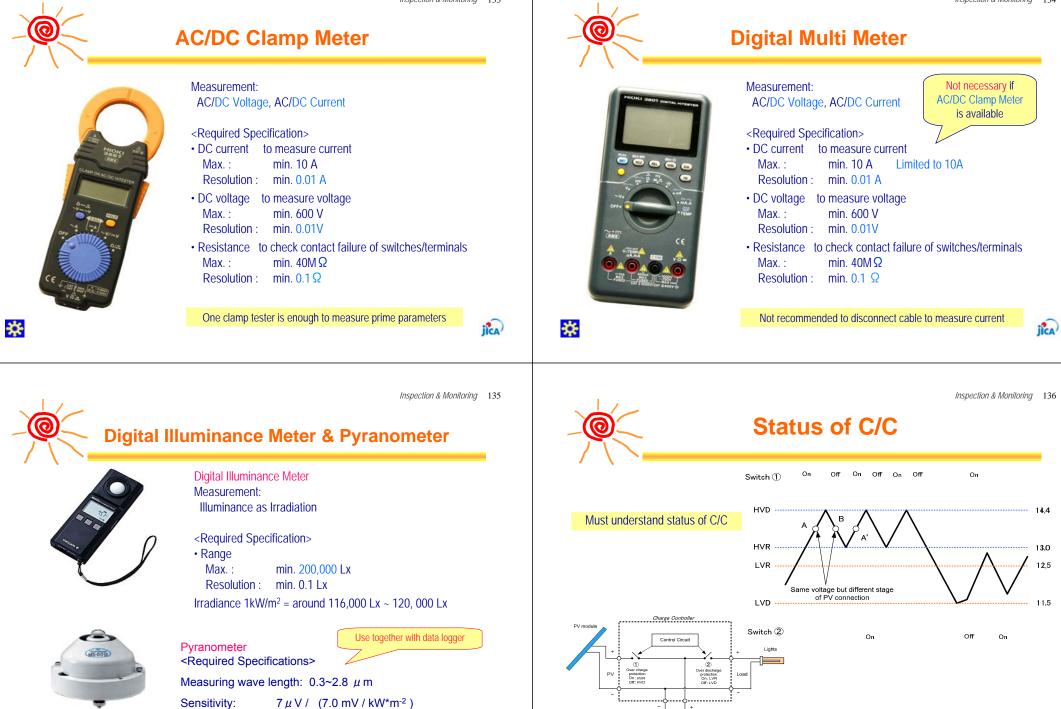
(Essential Knowledge)

 Electricity is invisible. Need to measure several parameters to check system status

System Parameters

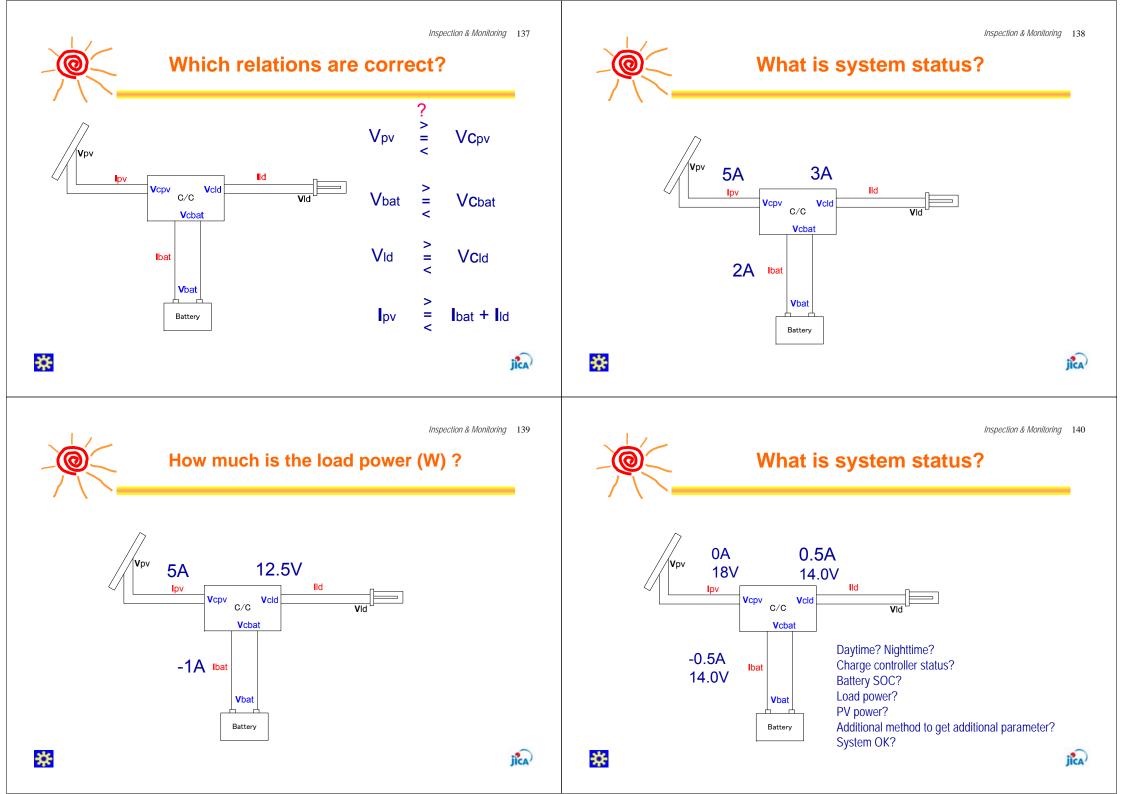
- System parameters
 - Battery Voltage
 - Battery Current - PV Voltage

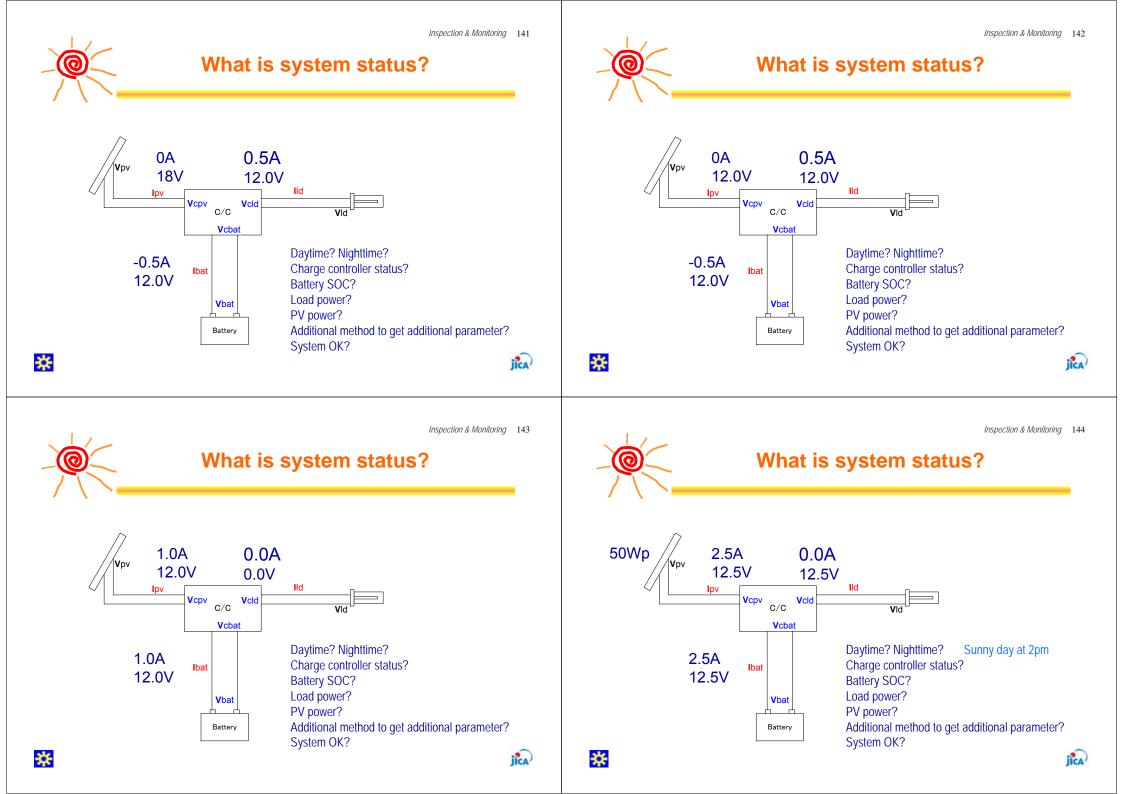
 - PV Current
 - Load Voltage
 - Load Current
 - Specific Gravity _
 - Battery Temperature
 - Irradiance
 - PV Temperature

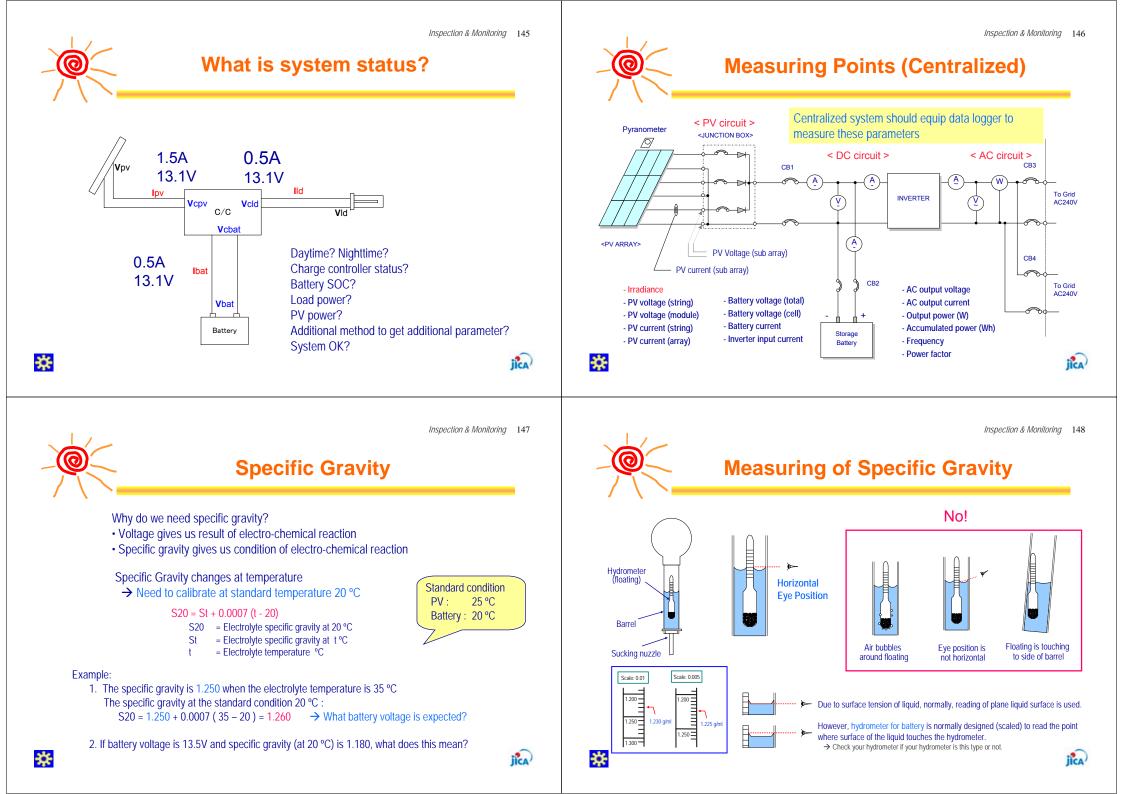

Must understand Meaning of Measured Values for Monitoring

jica)

Inspection & Monitoring 133


ilca




*

jica

Battery

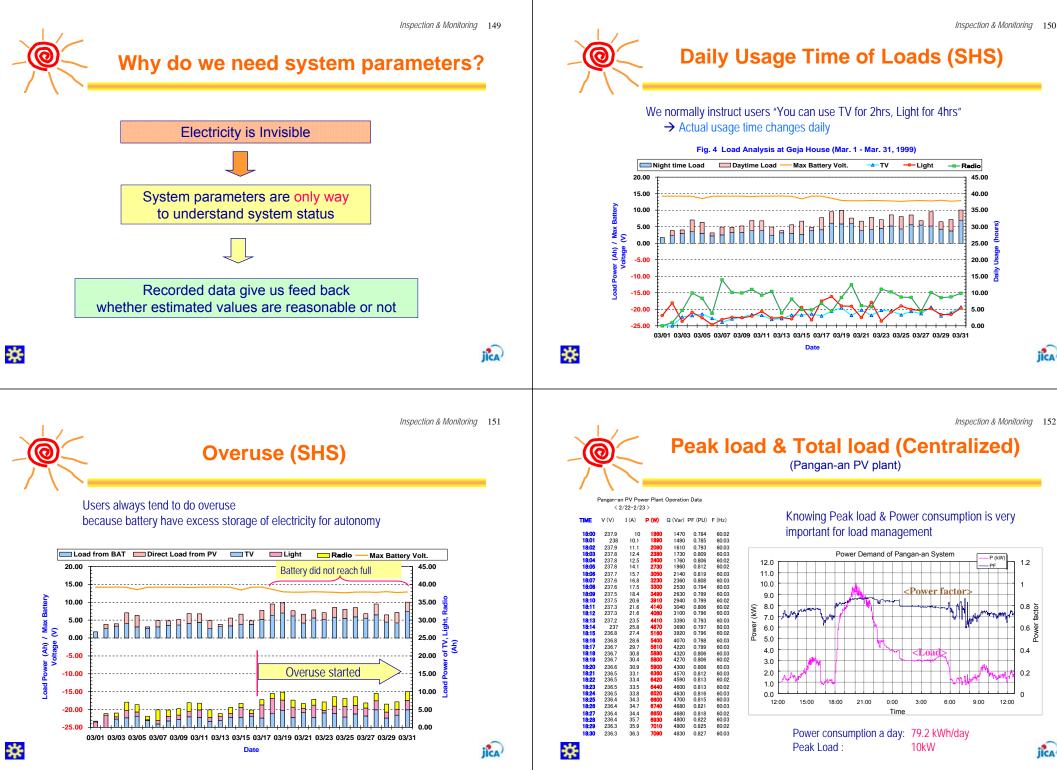
Inspection & Monitoring 150

45.00

40.00

35.00

30.00


25 00

20.00 15.00

10.00

.00

iica

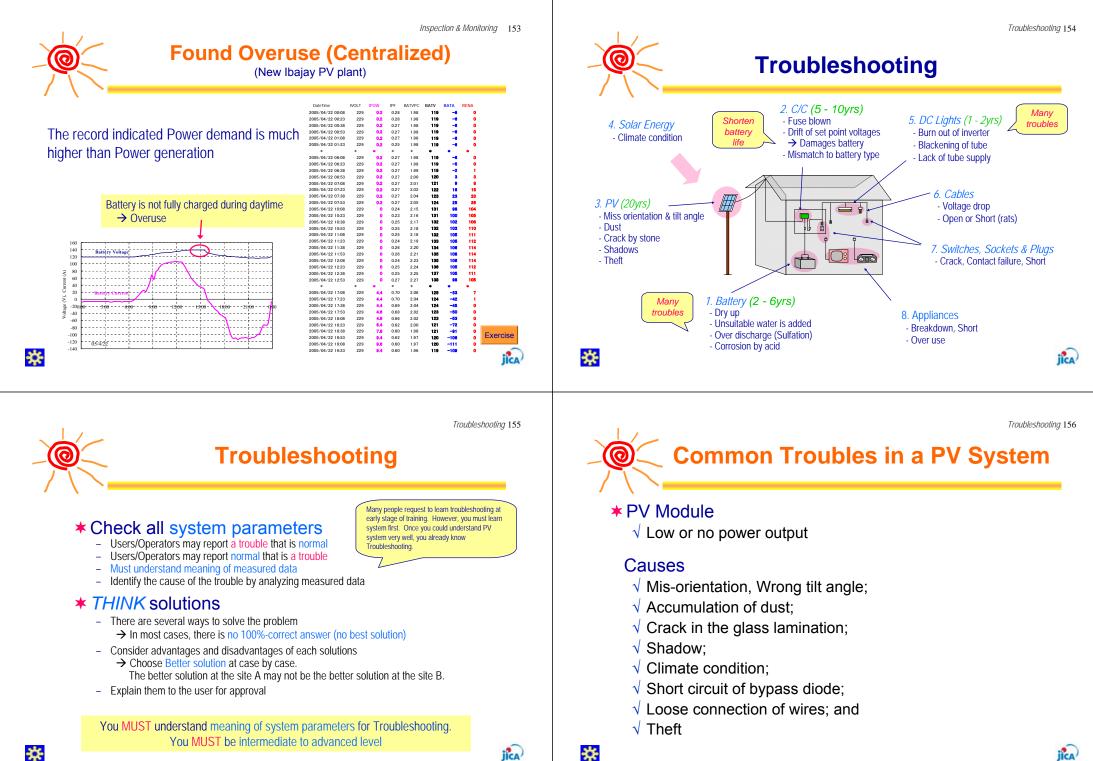
iica

1.2

actor 8.0

0.6 🦉

0.4


0.2

0

12:00

9:00

2

Common Troubles in a PV System

Charge Controller

- \sqrt{No} current is flowing to the battery;
- $\sqrt{\text{Signals fully charged though battery is just being charged;}}$
- $\sqrt{\text{Keeps charging even when fully charged}}$

Causes

- √ Blown-up fuse;
- $\sqrt{10}$ Set point voltages are not within the set standards;
- $\sqrt{\text{Loose connection of wires;}}$
- $\sqrt{}$ Malfunction of internal circuit

Common Troubles in a PV System

*Battery

- $\sqrt{}$ Easily discharged;
- $\sqrt{}$ Cannot be charged;
- ✓ Unequal cell voltages

Causes

- \checkmark Sulfation;
- \checkmark Dried up battery solution;
- ✓ Stratification;
- $\sqrt{}$ Loose connection at the terminals;
- $\sqrt{}$ High temperature;
- $\sqrt{\text{Leakage of electricity;}}$
- √ End of life

*

Troubleshooting 159

ilca

÷

Common Troubles in a PV System

*Balance-of-Systems (Cables, SW, Lights, etc.)

- $\sqrt{}$ No light even when battery is fully charged;
- $\sqrt{}$ Under-voltage at load end;
- \checkmark No power at load end

Causes

- $\sqrt{}$ Open or Short circuit or Grounding;
- $\sqrt{}$ Inappropriate/undersize cables (large voltage drop);
- √ Burn-out DC light tube/inverter;
- \checkmark Loose connection at the terminals;
- $\sqrt{}$ High resistance on the SW contact

Troubleshooting Procedures

★PV Module

- $\sqrt{\text{Check, rectify orientation and tilt angle (must not be < 10° facing South)}}$
- $\sqrt{\text{Check presence of dust and cracks,}}$
- $\sqrt{\text{Clean PV}}$ with water, detergents not needed;
- $\sqrt{1}$ Tighten loose connections at the terminal box;
- $\sqrt{\text{Check shadowing at PV module between 8am-4pm;}}$
- $\sqrt{\text{Relocate PV}}$ module to a clear and unobstructed area;
- $\sqrt{\text{Remove/prune tree/s that is/are causing shadows}}$ at PV Module
- $\sqrt{\text{Check/replace/remove bypass diode}}$

*

ilca

Troubleshooting 160

ilca

Troubleshooting Procedures

Charge Controller

- $\sqrt{1}$ Check voltage at the terminal and output current;
- $\sqrt{}$ Check for loose connections at the terminals;
- $\sqrt{\text{Check/replace busted fuse;}}$
- $\sqrt{\rm Check~HVD}$ and LVD settings, rectify settings as necessary.

If some trouble is remained, contact the supplier. If under warranty, request for replacement.

Troubleshooting Procedures

*****Battery

- $\sqrt{}$ Check loose connection at the terminals;
- $\sqrt{}$ Clean terminals with steel brush and apply grease;
- $\sqrt{}$ Check level of battery solution, top up when necessary;
- $\sqrt{}$ Use appropriate terminal lugs/clamps only;
- $\sqrt{}$ Check presence of sulfates at the terminals;
- $\sqrt{\text{Slightly shake battery (not >10° from the floor line at side)}}$ to avoid stratification;
- $\sqrt{}$ Check the installation condition, relocate if necessary;
- \checkmark Check the battery performance

🔆	2			jica	
Troubleshooting Procedures	3	Case	study of Troubl	Troubleshooting 164 eshooting	
★Balance of Systems (Cables, SW, Lights, etc.)	Batter	y can not charge	e fully in spite of fine day!		
Check voltage level at load end and voltage drop;	P	ossible Reason	Check point	Solution	
$\sqrt{1}$ Check for possible loose connections at the terminals;	Battery	level is too low	Weather condition/Overuse	User retraining	
$\sqrt{2}$ Check size of cable if the installed cable is the	Overuse	e of load	Usage condition of load	User retraining	
appropriate size, replace as necessary;	Loose c	connection, Rust	Connector, terminal	Retightening /Cleaning	
$\sqrt{1}$ Check continuity of cables, when open circuit, trace the	Dirt on F	PV module	Surface of PV module	Cleaning	
line and connect the open circuit;	Shadow	on PV module	Surrounding condition	Removal of the source	
•	Damage	e of cable	Condition of cable	Repair /Replacement	
Check possible short circuit and grounding in the line,	Damage	e of PV module	Condition of PV module	If bad, Contact engineer	
re-insulate short-circuited/grounded line;	Malfunc	tion of C/C	Operation of C/C	If bad, Contact engineer	
 Check operation of SW and voltage drop between input and output. Clean contact if necessary; 	Battery	is weakening	Performance of battery	If bad, replace it	
 ✓ Replace DC light when necessary and use brands with that passed the Philippine Standards (with PS Mark) 	→			jica)

Case study of Troubleshooting

C/C can not operate properly!

Possible Reason	Check point	Solution
Loose connection	Terminal	Reconnection /Retightening
Set voltage is shifted	HVD and LVD setting	Rectify setting
Malfunction of C/C	Operation of C/C	If bad, Contact supplier
Damage of PV module	Condition of PV module	If bad, Replace it
Damage of cable	Condition of cable	Repair /Replacement
Direct connection between battery and additional load	Connection of additional load	Remove User retraining
Effect of noise	Terminal voltage	Denoising/Grounding
Battery is weakening	Performance of battery	If bad, replace it
Type/voltage of battery is not matched with C/C	Specification of battery and C/C	Replacement of Battery or C/C

jica

Troubleshooting 167

Case study of Troubleshooting

Appliances can not use even with correct connection of battery!					
Possible Reason	Check point	Solution			
Failure of appliance	Condition of appliance	Repair/Replacement			
Loose connection	Connector, terminal	Retightening			
Battery can not charge fully	Condition of battery, C/C	If bad, Contact supplier			
Damage of cable, SW	Condition of cable, SW	Repair/Replacement			
Malfunction of C/C	Operation of C/C	If bad, Contact engineer			

The interval of water refilling is getting shorter than ever!

Possible Reason	Check point	Solution
Overcharge	Function of charge controller	If bad, Contact supplier
Leave battery at hot place	Ambient condition	Change in place
Leakage of electrolyte	Damage of battery case	If bad, Replace it
Battery is weakening	Performance of battery	If bad, Replace it

Case study of Troubleshooting

The usage hour of appliances is getting shorter than ever!

Possible Reason	Check point	Solution
Usage of appliance which is large consumption	Specification of appliances	Reduce power usage
Loose connection	Connector, terminal	Retightening
Shade on PV module	Surrounding condition	Removal of the source
Damage of PV module	Condition of PV module	If bad, Contact engineer
Rust of connector	Condition of connector	Cleaning (with sandpaper)
Battery is weakening	Performance of battery	If bad, Replace it
Malfunction of C/C	Operation of C/C	If bad, Replace it

*

*

Troubleshooting 168 Troubleshooting How to check PV module
 Broken glas
 Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

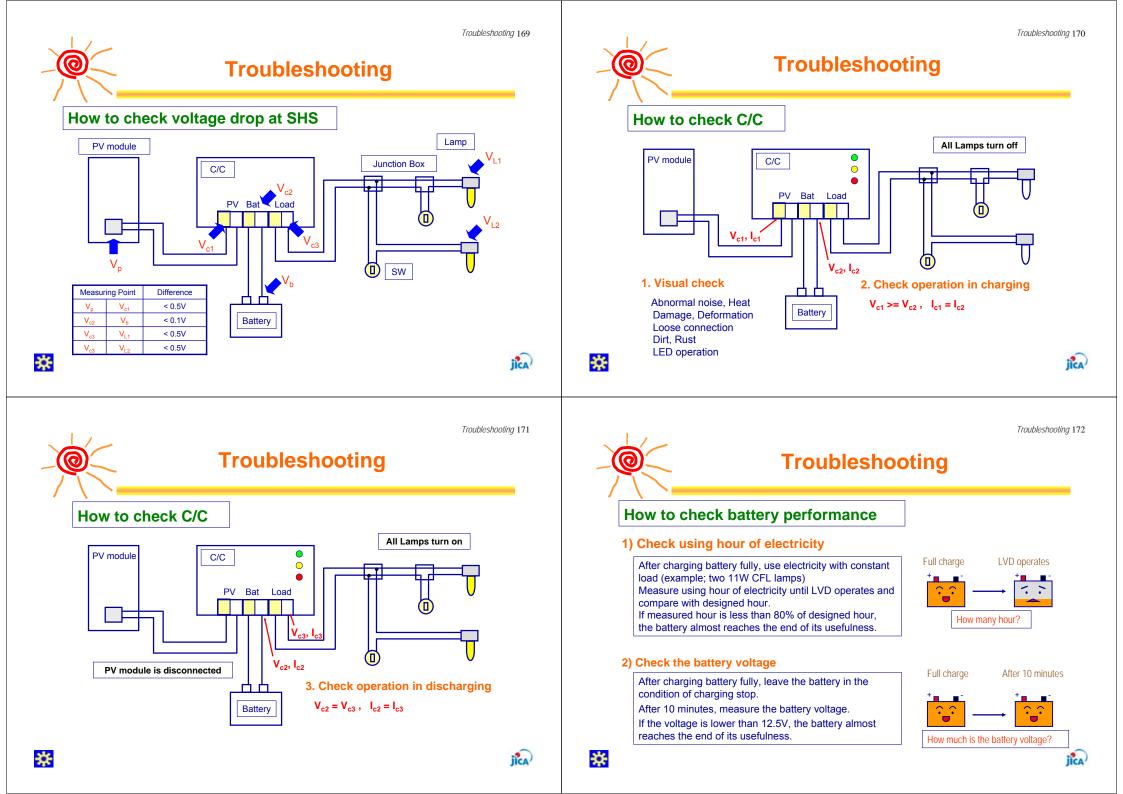
 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc

 Image: Open circuit voltage: Voc
 Short circuit current: Isc


 Image: Open circuit voltage: Voc
 Short circuit current: Isc

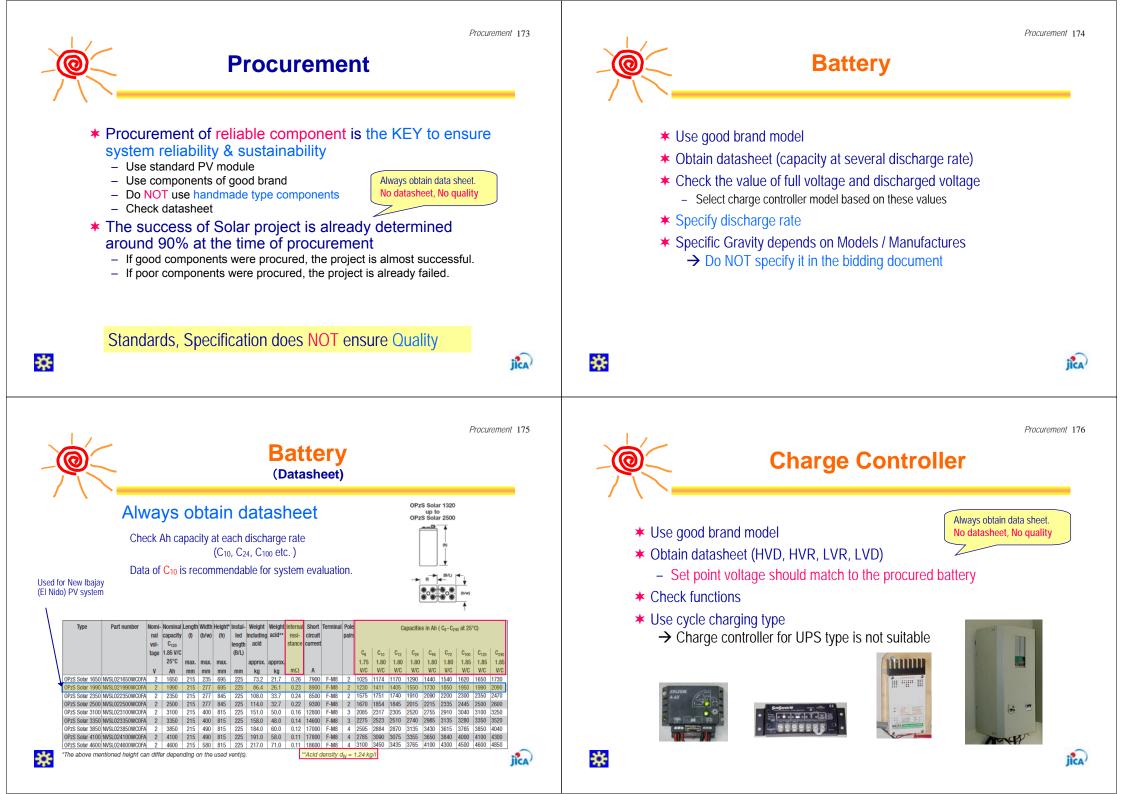
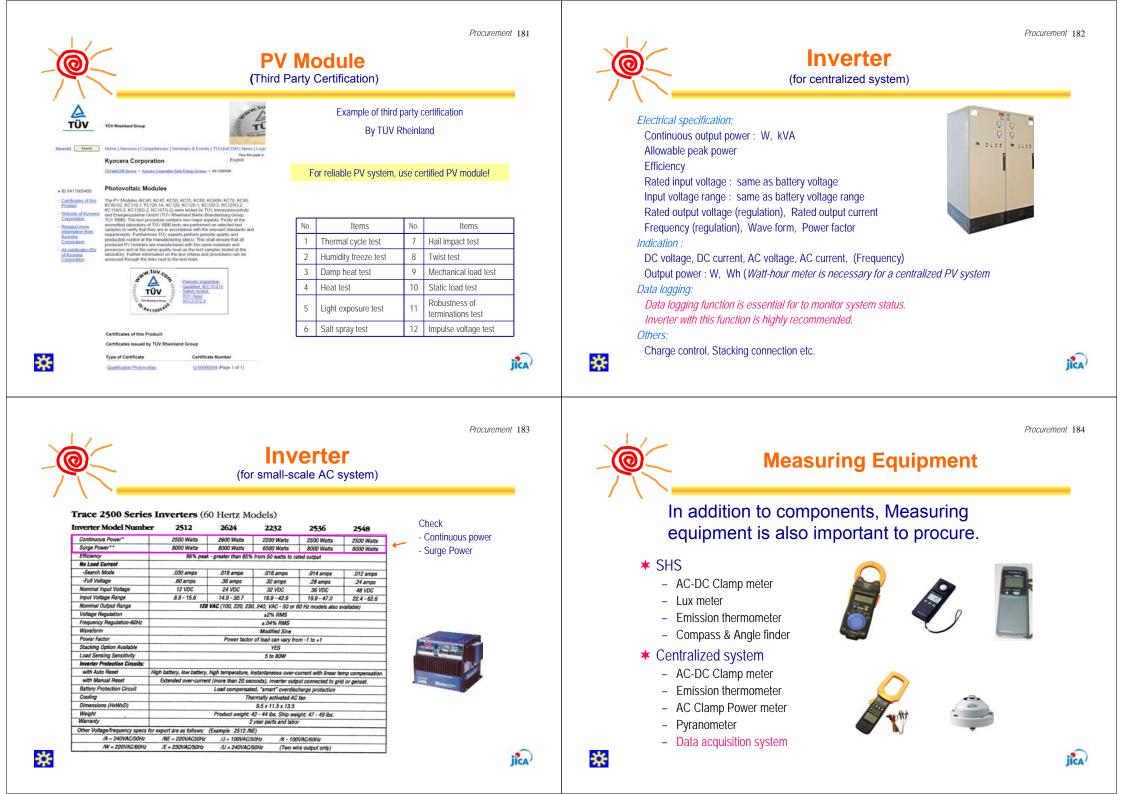

 Image: Open circuit voltage: Voc
 Short circuit current: Isc


 Image: Open circuit voltage: Voc
 Short circuit current: Isc

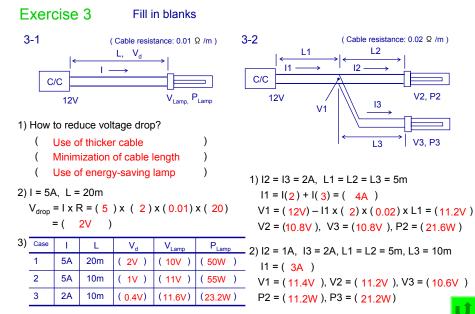

Visual check \rightarrow Measure Voc and Isc \rightarrow Check operation

jica)

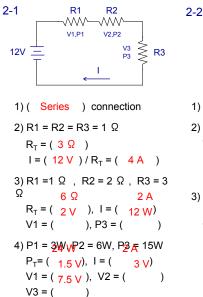
Exercise 1

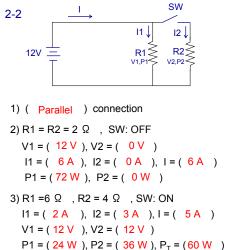
1-1 Fill in blanks

Feature of each PV system


System	BCS	DC SHS	AC SHS	Centralized System
Capacity of PV array	300W	50W	100W	10kW
Charge controller	(Panel meter)	Need	Need	Need
Battery	Need	Need	Need	Need
Inverter	No	No	Need	Need
Distribution line	No	No	No	Need
Supply electricity	DC	DC	AC	AC
Number of user	Share (10)	1	1	More than 10

1-2 Answer following questions?


1) PV Module converts solar energy into DC electricity .


2) Peak load is a Maximum load power. Unit: [W]

3) What is the device required the most special care in PV system? Battery

Exercise 2 Fill in blanks

Exercise 4

V2, P2

V3. P3

4-1 Answer following guestions?

1) Higher irradiance increases output current


2) Higher temperature reduces output voltage.

3) What is the purpose of installing blocking diode? To prevent reverse current from another string To bypass the current in case cells have less output

4) What is the purpose of installing bypass diode?

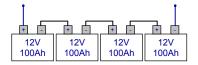
5) What happen to the bypass diode when battery is connected in reverse? Bypass diode will be broken (burned)

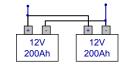
4-2 Fill in blanks

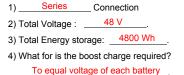
4-3 Fill in blanks with marks

Features of each type of PV Module

	Mono- crystalline	Poly- crystalline	Amorph ous
Efficiency	Н	М	L
Module Area (same output)	S	М	L
Cost (Same output)	Н	М	L
Reliability	Н	М	L


[Mark] (H:high, M:middle, L:low) or (L:large, M:medium, S:small)


Exercise 5


5-1 Answer following questions?

1) What is role of battery ?		Storage of electricity		
2) What has close relation to the stat	Specific gravity .			
3) If liquid level of battery is low, what should you do?		Add distilled water (Do not add acid)		
4) What affects the cycle life of batte	ry?	Depth of discharge, Te	mperature .	
5) How to prevent sulfation?	Avoid over discharge	, Avoid leaving battery	uncharged .	

5-2 Fill in blanks

1)	Parallel	Conr	nection
2) Total Voltage : 1		12	2 V
3) Total Energy storage:		rage:	4800 Wh

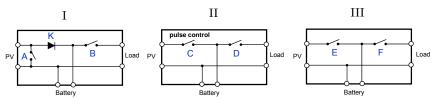
Exercise 6

6-1 Answer following questions?

1) What does charge controller protect batteries from? Overcharge , Over discharge

2) What function operates in the following case?

* When battery voltage reaches to <u>LVD</u>, load is disconnected.


* When battery voltage reaches to <u>HVD</u> at the series type C/C , PV is disconnected.

* When battery voltage recovers above LVR , load is reconnected

3) In which order should the equipments be connected? 1) Battery > 2) PV > 3) Load

Exercise 6

6-2 Fill in blank spaces

Status of switch (ON or OFF or Pulse) [ON = short, OFF = open]

	Contro	oller I	Contro	oller II	Controller III					
Battery voltage	SW A	SW B	SW C	SW D	SW E	SW F				
V = HVD	ON	ON	Pulse/OFF	ON	OFF	ON				
HVD > V > HVR	ON / OFF	ON	ON	ON	ON / OFF	ON ON / OFF				
LVR > V > LVD	OFF	ON / OFF	ON	ON / OFF	ON					
V = LVD	OFF	OFF	ON	OFF	ON	OFF				
Туре	Shur	nt	PWI	М	Series					

* What is "K"? Blocking diode

Exercise 7

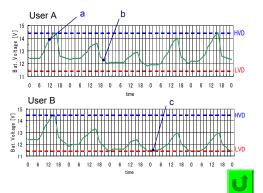
7-1 Answer following questions?

1) Write down the temperature correction formula of specific gravityS20 =St + 0.0007 * (t - 20)2) Calculate the specific gravity (S20) at the following condition (t = 40 °C, S40 = 1.200)

S20 = S40 + 0.0007 * (40 - 20) = 1.200 + 0.0007 * 20 = 1.214

S20 = 1.214

7-2 Answer following questions?


1) What is the status of battery at this point?

- a. Battery is being charged.
- b. Battery is being discharged.
- c. Battery is disconnected from $\overline{C/C (LVD)}$
- 2) Explain the status of use for each user.
- User A

Status of Use is good. System did not stop even bad weather day.

User B

Status of use is bad, overuse. System stopped a few times in night time. Battery could not recover even fine day.

ANNEX 4 : Examination Evaluation Sheet

Evaluation Sheet for PV trainer's Training

Γ						Examination score at each page									Train	ing eva	luation	Score ratio at each subjects							Number of subject								
N	o. NAME	Background	Compan	y Result	Charge controller		Battery		1	PV Module		System		Basic Electricity			Exam Total	Lecture	Hands- on	Total	СС	Bat	PV	System	Elec Train	ng Ave %	>70	>80	>90	Calc ability			
																							100	100	100	100	100	100 10) 100	70	80	90	
-	l																																
4	2																																
	3																																
4	Ļ																																
Ę	5																																
ė																																	
1	,																																
8	3																																
Ģ)																																
1	0																																
1	1																																
1	2																																
1	3																																
1	4																																
1	5																																

A : Qualified [2 subjects >= 90, 4 subjects >= 80] D : Follow-up Training (Lecture & Hands-on) is necessary B : Qualified Assistant Trainer (Basic) [3 subjects >= 80, 4 subjects >= 70]
 E : Follow-up Training (Lecture & Hands-on + Basic Electricity) is necessary

C : Follow-up Training (Lecture) is necessary

F : Additional Training (Beginner's level) is necessary [Ave. score below 50]

As for grading C, D and E

C:Average \geq 60 and lack of one subject to be qualified. D:Average \geq 60 but not C. E:Average \geq 50 and < 60.

Evaluation Sheet for PV Engineer's Training

				Examination score at each page													Score ratio at each subjects							
No.	NAME	Organization		Basic Electricity		Battery		C/C		PV Module		PV system		Monitoring & troubleshooting			Exam Total	Electricity	Bat	C/C	PV	System	Monitoring	Ave %
				10	24	13	12	11	7	18	13	15	11	13	15	9	171	100	100	100	100	100	100	100
1			Pre																					
			Post																					
2			Pre																					
			Post																					
3			Pre																					
			Post																					
4			Pre																					
			Post																					
5			Pre																					
<u> </u>			Post																					
6			Pre Post																					
			Post																				 	
7			Post																					
			Pre																				┢───┦	
8			Post																					
			Pre																					
9			Post																					
10			Pre																					
10			Post																					
															1		Pre							
																	Post							

Department of Energy

Energy Complex Merritt Road, Fort Bonifacio, Taguig City, Metro Manila TEL: 479-2900 FAX: 840-1817