

Establishment-Led Service Improvement and Cost Recovery (EL-SICR) Modality

30th July 2024

Background

The **Establishment-Led Service Improvement and Cost Recovery approach** emerged from the multifaceted challenges that Water Establishments (WEs) persistently face in Lebanon, focusing on the enhancement of three main factors:

- **1. Resources** in terms of *water sources, infrastructure, energy and liquidity.*
- **2. Autonomy** in terms of performance-based selection of staff, dynamic internal organization, flexible use of available finances and volumetric tariffing and fair settlement of arrears.
- **3. Accountability** in terms of local communities and authorities lobbying for satisfactory and equitable services, subscription and payment campaigns for cost recovery, and transparency and compliance with environmentally sustainable uses of resources.

Main Objectives

- Enhance WEs' capacity to timely and efficiently respond to troubleshooting needs and maintenance at the local level
- Increase WEs' leadership in conducting assessment, design and supervision of infrastructure improvement works
- Improve WEs' visibility towards users
- Provide means and resources for the WEs' local staff to plan and perform the expected expansion of capacities and effectiveness
- Consolidate procurement procedures, collection of evidence and lessons learned, benchmarks and cost-benefit analyses

EL-SICR Process

Three main steps were undertaken:

1. The Implementing Partner (IP) temporarily assigns staff, typically an engineer to the WE through a **secondment process**.

2. The IP/seconded engineer **assesses the local section** of the Water Establishment (WE) to identify its strengths and weaknesses.

3. A tailored work plan is jointly developed to focus on improving services in a specific number of areas.

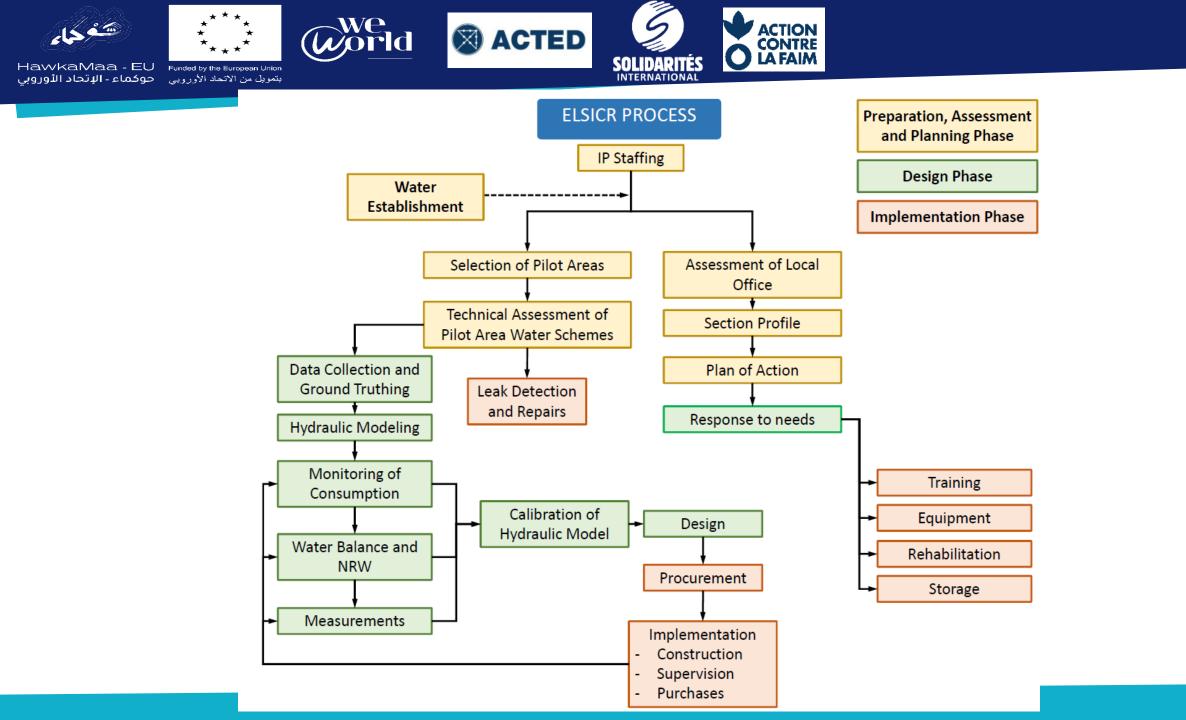
The EL-SICR Manual

A Guidelines Manual is under preparation for EL-SICR approach and methodology.

The **purpose of the Manual** is to outline the EL-SICR methodology developed for providing effective and sustainable assistance to the Water sector in a Nexus context that bridges development and emergency. The Manual aims at guiding practitioners through the key components of the EL-SICR methodology, offering a comprehensive framework of activities that meet the multi-level needs of Lebanon's Water sector.

It details the following components:

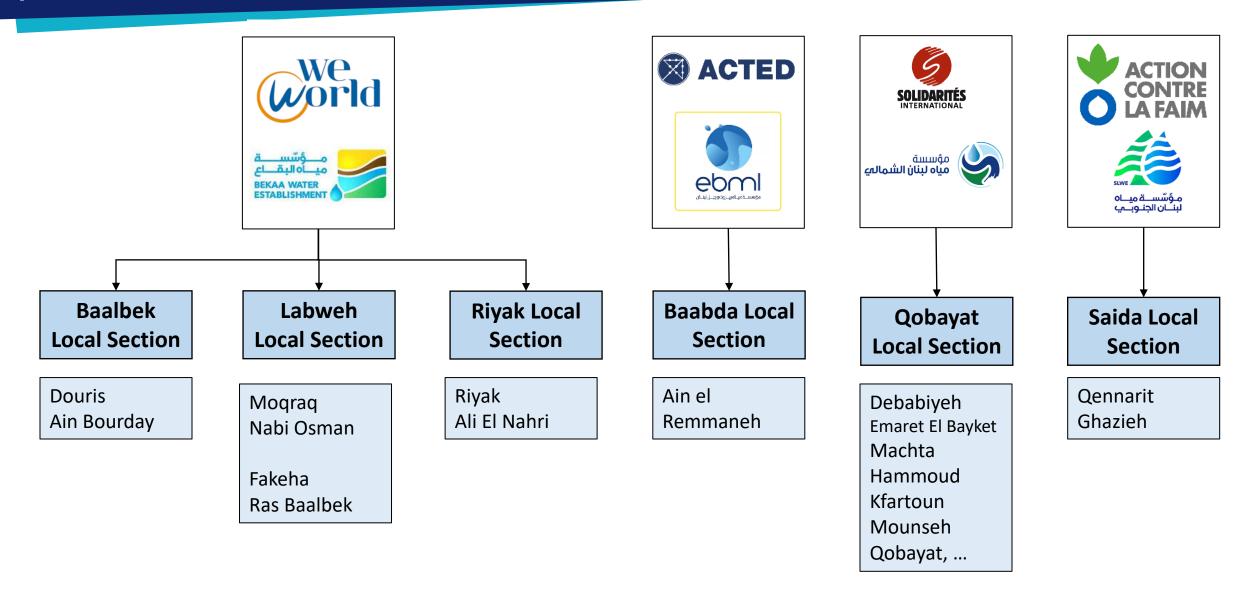
- EL-SICR Methodology
- Monitoring and Accountability
- Replicability, Lessons learned and Recommendations



The EL-SICR Manual

Table of Contents

1. Introduction and rationale	4
1.1. HawkaMaa-EU Project and EL-SICR Manual	5
1.2. EL-SICR Approach	6
1.3. EL-SICR Process	8
2. EL-SICR Methodology	9
2.1. Staffing	9
Senior Hydraulic Engineer and Secondment	10
WE Staff	12
Implementing Partners' Staff	14
2.2. Assessment and enhancement of WE local offices	15
Sections Profiles and Plans of Action	
Enhancement of WE local offices	
2.3. Assessment and upgrade of potable water schemes	20
Study Phase	
Works, supplies and supervision	
2.4. Illegal connections and pressure optimization	


3.	Monitoring and accountability	32
4.	EL-SICR in Lebanon: Replicability, Lessons Learnt and Recommendations	33
Pi	oject-specific Lessons Learnt	33
	Staffing	34
	Assessment and enhancement of WE local offices	35
	Assessment and upgrade of potable water schemes	36
Re	ecommendations	37
	Staffing	38
	Assessment and enhancement of WE local offices	39
	Assessment and upgrade of potable water schemes	40

HawkaMaa - EU Funded by the European Union بتمويل من الاتحاد الأوروبي حوكماء - الإتحاد الأوروبي

ACTION CONTRE LA FAIM

 \mathbf{O}

SOLIDARITÉS INTERNATIONAL

1 - Staffing

The successful implementation of the EL-SICR approach relies significantly on the capacities and coordination among various actors. The **key personnel** in this approach is mainly composed of two groups of staff:

Water Establishment Staff and Seconded Engineers

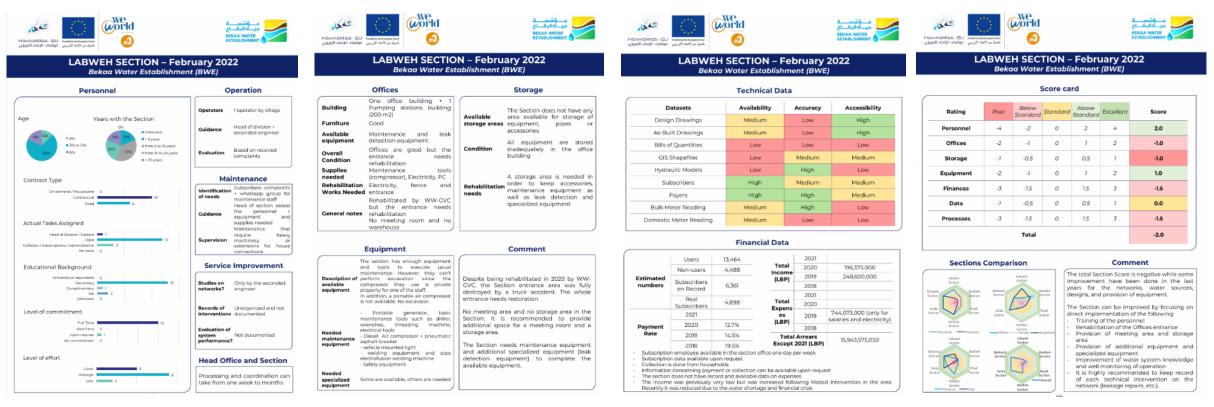
Local WE section teams, who execute maintenance, troubleshoot issues, and day-to-day operations, together with the Seconded Engineers that are responsible for overseeing technical assessments, design, and implementation of infrastructure improvements.

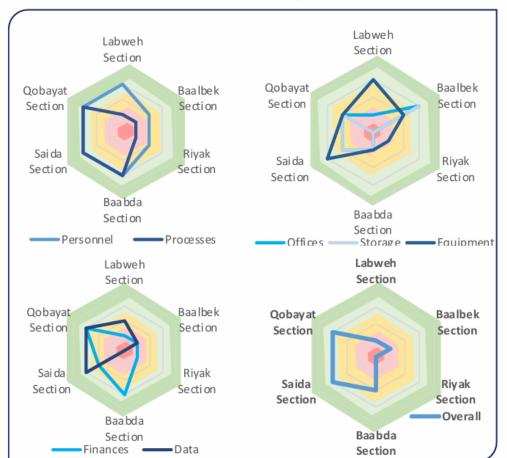
Implementing Partners' Staff and Senior Hydraulic Engineer

IPs' Project Managers, Coordinators, and Officers coordinate with the staff implementing EL-SICR: the Social Staff is responsible for community engagement and the Senior Hydraulic Engineer coordinates the work of the seconded engineers and provides technical support to the Engineering team.

In-depth assessment is an exercise carried out by the engineering staff, in coordination with WE local section staff and the support of the Implementing Partner.

The assessment is composed of five main sections:


- **Personnel**: number, capacities and needs
- Resources:
 - Offices: current condition, available and needed furniture, necessary supplies, and any rehabilitation or repair work required to ensure better working conditions.
 - **Storage**: condition of local storage units, area, current capacity, condition and any rehabilitation or upgrade needs.
 - Equipment: maintenance and safety tools + specialized equipment for NRW and leak detection equipment.


- **Finances**: financial standing of the local section.
- **Data**: including drawings, designs, bills of quantities, hydraulic models, GIS data, subscriptions and payments, and readings from bulk meters and domestic meters.
- **Processes**: operation, maintenance, subscriptions, collection, service improvement, cost recovery, processing and coordination processes.

Sections Profiles and Plans of Action

Sections Comparison

Coaching, Training and Capacity Building

• Technical training sessions:

- ✓ fundamentals of hydraulics,
- hydraulic modeling,
- calibration of hydraulic models,
- ✓ non-revenue water,
- ✓ identification and reduction of water losses
- data collection, analysis, and visualization using GIS
- Training on the proper use and maintenance of equipment used in water management and distribution
- Operation schedules: scheduling and coordination of water distribution operations to ensure efficient and effective service delivery
- Illegal connections campaigns: identifying and addressing illegal water connections
- **Procurement department training**: procurement process, with a particular emphasis on compliance with the New Lebanese Public Procurement Law.

1 2 3 Item Description Indicative Image of Item Unit Nr 100 Miscellaneous Equipment Portable self-priming dewatering pump, gasoline powered (or 101 equivalent), 2" (50mm) Intake/Outlet 1HP minimum. Minimum flow U rate of 5 1/s. With copper, brushless motor. Portable generator (5Kva Diesel generator), runtime no less than 10hr at full load. ISO 8528 or equivalent, 220V rated voltage, operating noise level no higher than 70dB (with noise case), electric 102 start with battery. The Coil of alternator must be copper. The U supplier should guarantee that spare parts for the generator are readily available in the local market. Warranty no less than 2 years. Portable circular metal saw with accessories (main use for DI pipes); minimum 200mm stainless steel disk, minimum 2,000W 103 U (240V AC) and 2,500 rpm motor (no load speed), with Bevel lever and depth guide. Warranty no less than 2 years. Walk behind Asphalt cutter/saw, with bladeguard, pointer wheel, water system, minimum 10HP, diesel powered, cutting depth of 4in, U 104 (or equivalent), complete with all accessories. With minimum 400mm diameter Cured Concrete Diamond Blade, or equivalent.

Warranty no less than 2 years.

Assessment of Equipment need / maintenance and provision of equipment

11	Wrench Set made of heavy duty steel (chrome vanadium or better) fitting sizes between 3/8" to 1 1/2"		U
11	Carbon Steel Pincer/Plier Set Including at minimum: 5 Linesman, 6" long nose, 6" bent nose, 6" slip joint, 6" diagonal cutter, 8" tongue & groove, 6" end cutter, 7" curved jaw, 6" long nose locking, 8" adjustable (or equivalent)		υ
11	Pipe wrench set, heavy duty steel, adjustable for fittings up to 18 6 inches (minimum of 4 wrenches of varying ascending sizes per set), with storage bag or case.		U
11	Adjustable wrench made of heavy duty steel (Chrome vanadium or better), up to 18 inches, heavy duty steel.	A Star	U
11	Socket wrench set made of heavy duty steel (Chrome vanadium or better) (including storage case), heavy duty, with adjustable heads 4 to 24mm range minimum; includes Ratchets set minimum 12pc with range 8 to 19mm, Extensions, Combination Wrenches set and Hex Keys set.	1 3	U

Specialized / Leak Detection Equipment

100	Specialized Equipment		
101	Metal pipes and cables locator		U
102	Ultrasonid/Acoustic leak detection ground microphone and stick, with complete accessories. Warranty no less than 2 years.		U
103	Manual diaphragm leakage listening stick		U
104	Portable hand-held electronic digital water pressure gauge, for positive and negative pressures, minimum 0.2% accuracy, range up to 40Mpa. Complete with all cables, accessories and carrying case.	Take Conversion () () The same () The same	U
105	Electronic Digital Thermometer (Celsius) for use in hot and cold fluids and semisolid materials. For use in commercial/industrial environments with Easy-to-read screen. Battery Operated and Factory Calibrated.		U

Specialized / Leak Detection Equipment

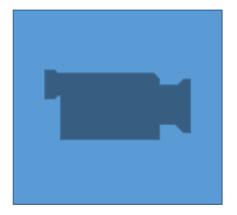
Training on the use of the Specialized Equipment

Rehabilitation Works

Rehabilitation Works

Riyak BWE Office

Before and After rehabilitation



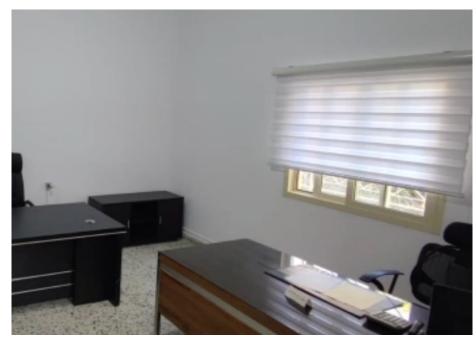
Rehabilitation Works

EBML Baabda Office

Rehabilitation Works

Rehabilitation of Qobayat NLWE Offices

Rehabilitation Works


NLWE Qobayat Office

Before and After rehabilitation

Rehabilitation Works

NLWE Qobayat Office

Before and After rehabilitation

Constructed warehouse in Baalbek

Creating Storage Areas

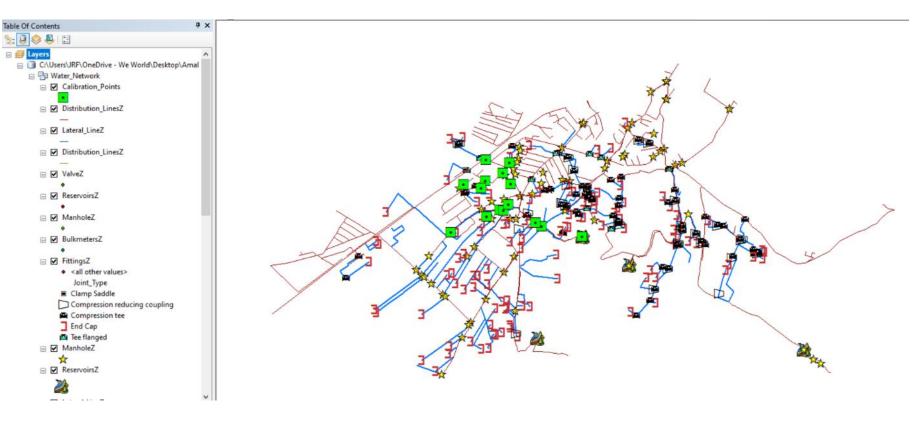
Installing Solar Systems for Offices Electricity supply

Solar System in Qobayat

Solar System in Labweh

STUDY PHASE

DOURIS AND AIN BOURDAY WATER SCHEMES

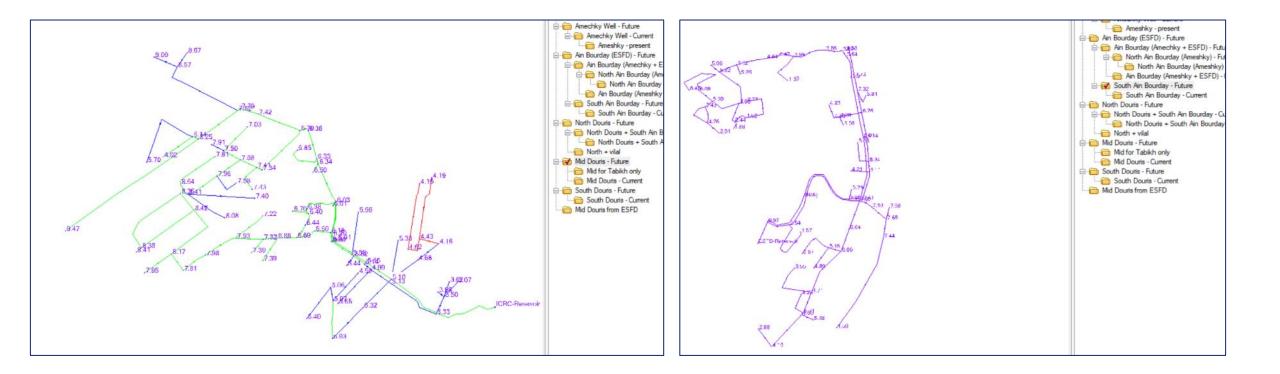


Data Collection and Ground Truthing

- The Hydraulic Engineer begins with gathering all available data and information about the targeted water scheme.
 - ✓ as-built drawings,
 - ✓ design drawings,
 - ✓ any relevant data from sources such as the Water Establishment, contractors, or consultants
- Ground truthing is the initial step in the assessment and evaluation phase of the existing water network.
- The objective of this activity is to gather accurate and comprehensive data about the current conditions of the water scheme.
- The engineer proceeds with verifying, validating, and updating the database.
- Field inspections by WE staff should be planned and supervised to "reverse map" uncertain components of the water networks.
- The collected information is then used to update the GIS database.

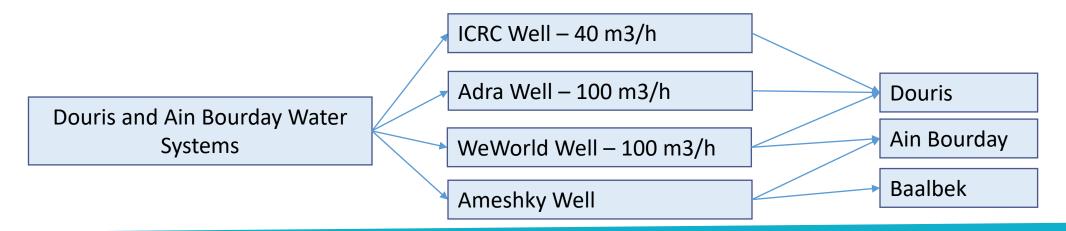
Data Collection and Ground Truthing

Hydraulic Modeling



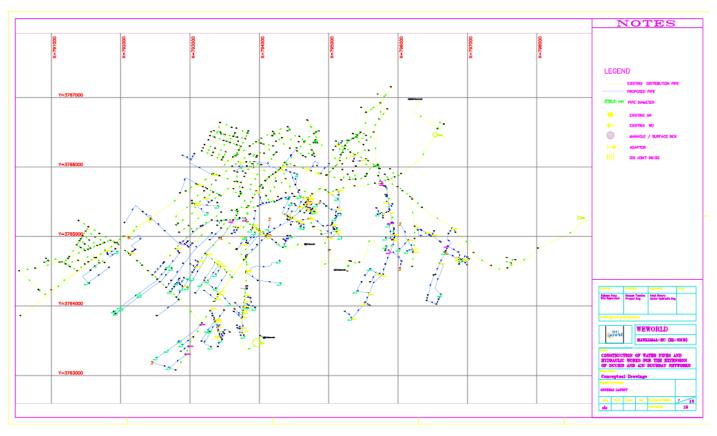
Hydraulic Modeling

- By exporting GIS data for pipelines, reservoirs, and other hydraulic elements into a hydraulic model, engineers create a digital twin of the physical system
- This hydraulic model is then used to simulate various scenarios, such as changes in demand, the addition of new infrastructure (e.g., pipe extensions to new neighborhoods)
- These simulations enable hydraulic engineers to assess the system's performance under different conditions and use this information to design and improve the water supply
- When designing new network extensions, engineers must adhere to the standards and guidelines set forth in the Lebanese National Water Strategy.


Hydraulic Modeling – Various Scenarios

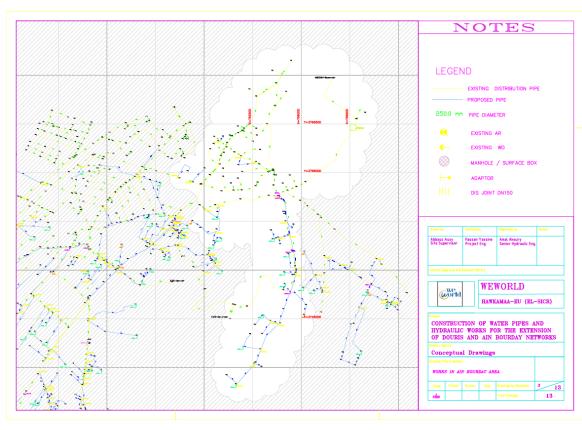
Data Collection and Ground Truthing

- All needed data in hand, the second step is to analyze the data and understand the operation system:
 - ✓ Available water sources and areas of supply
 - ✓ Daily water production from wells
 - ✓ Can the current operation schedule and DMA distribution be improved? How?
 - ✓ Is it possible to reach more population?


Design

- Network extensions to supply new subscribers and/or connect existing unconnected subscribers;
- Performance-related works and interventions on the networks in order to improve their performance such as modifications of connections, creating or disconnecting loops, etc.;
- Installation of district meters or pressure loggers on specific points on the networks including all related civil construction and hydraulic works.

The design process includes:


- Hydraulic modeling and calculation notes
- creating design drawings and design reports,
- Estimating the quantities of work required and estimating the budget needed for each intervention.

Design – Drawings Preparation

Design – Drawings Preparation

МОЗ	M04
80 • 90 PE EXISTING	DN150 EXISTING
DN150 → 1⊗I→ DN 150 EXISTING 150	DN250 →I⊗I→ DN250 EXISTING 250
FLANGE ADAPTOR DN1502FLANGED TEE 150X80X1501FLANGE ADAPTOR OD90X3"1GV DN1502GV DN801	FLANGE ADAPTOR DN2502FLANGED TEE 250X150X2501FLANGE ADAPTOR DN1501GV DN2502
MANHOLE 125cmx175cm CNEW	MANHOLE 200cmx125cm CNEW

Design – Drawings Preparation

Procurement for Provision of Supplies and for Works Implementation

Works implementation can be carried out through several methods:

- **Trained Daily Workers**: paid by supporting partners and supervised by the Water Establishment (WE) and the supporting partners through the engineers.
- Contractors through various modalities:
 - > Direct Tenders
 - Framework Agreements

QC/QA and Supervision of Works

The works implementation are supervised by the Hydraulic/civil Engineers with the support of site engineers from the supporting partner:

- Quality Assurance
- Compliance with laws and regulations including safety regulations and environmental standards
- Progress Monitoring
- Contractor Accountability

The engineers monitor the progress of the works, provide daily reports and maintain records of the quantity of work completed.

They prepare variation orders to ensure that contractual agreements accurately reflect the evolving needs of the project.

CALIBRATION OF HYDRAULIC MODEL, LEAK DETECTION CAMPAIGN AND MONITORING OF WATER CONSUMPTION

ALI EL NAHRI

OPERATION AND MAINTENANCE (O&M)

- To operate and maintain the facilities appropriately, the development of the technical capacities of staff was required.
- Despite empowering the Riyak section, the WE still lacks the ability of performing technical activities and to cover the cost of operation and maintenance
- The BWE Riyak Section doesn't have access to database related to the existing networks and monitoring
 of water consumption

O&M activities start with the planning and design of a facility and continue through its life cycle.

Operations:

- Hydraulic integrity: ability of a distribution system to meet all user demands
- DMAs form the basis for the system water balance, and allows leakage, pipe bursts and illegal connections to be monitored in manageable areas of the system.

Maintenance:

- Physical: Ability to have correctly functioning components
- Repair networks, fittings and leakages

Status of Ali el Nahri Network:

All the existing pipes are very old and were installed in the early 2000's; Aging pipes, which can corrode over time, causing a lot of physical water loss.

HawkaMaa - EU Funded by the European Union بتمويل من الاتحاد الأوروبي حوكماء - الإتحاد الأوروبي


Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri

Leaks (visible or hidden) have a negative impact on network performance, acting as open demands and resulting in decreased pressure and inadequate service.

- Purchase of Leak Detection Equipment
- Training of staff on the efficient use of the equipment
- Conduct leak detection campaigns

Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri

- When dealing with existing networks, it is essential to evaluate potential issues and design improvements. To achieve this, the hydraulic engineers must first calibrate the hydraulic model using on-site real information:
 - > By taking measurements at various points in the network for pressure and flow
 - Incorporating this data into the hydraulic model

The goal is to create a model that accurately reflects the real distribution scenarios as closely as possible.

Tools:

- Use specialized equipment
- Take readings from house connections from water meters where available and by basic means (bottles and timers) → Electromagnetic / mechanical Water meters installed where found needed
- Take readings from district water meters at various locations on a regular basis to monitor the overall consumption of a specific District Metered Area (DMA) on the network
- Take readings from pressure loggers

Flow

Reading

	Distribution Neighborhoods (DMAs)						
Current Water Supply Status		From B\	From Jomaa Well	TOTAL			
	Saha	Bayader	Kroum	Toward High School	Jomaa		
Number of Residents	4,716	2,868	3,384	438	4,866	16,272	
Number of subscriptions	402	208	280	37	425	1,352	
Number of subscribed people	2,412	1,248	1,680	222	2,550	8,112	
Estimated number of illegal connections	298	217	222	28	297	1,062	
Distribution Pattern	Every three days (between 1300 and 1500 m3 once every 3 days for each neighborhood)		Everyday	Everyday			
Total volume of physical losses (m3/day)	301	358	330	49	100	1,138	
Physical NRW (%)	66.9%	79.6%	73.3%	70.3%	14.3%	53.7%	
Commercial NRW (%)	6.4%	105.7%	52.8%	79.8%	56.6%	49.1%	
Average quantity received per apartment (m3/day)	0.21	0.22	0.24	0.32	0.83	0.41	
Quantity of water received per person (I/day)	35.50	36.04	39.84	53.36	138.54	67.79	

Stages of	Bronocod moscuros and solutions					
Implementation	Proposed measures and solutions					
Preparation and cleaning	Clean all the surface boxes (this is requested and can be done by BWE staff or daily workers before the intervention of any contractor)					
	Repair visible leakages (Refer to Annex 3 for locations and description of needed works)					
	Repair defected valves and rehabilitate the old manholes (Refer to Annex 3 for locations and description of needed works)					
First intervention for the network improvement	Disconnect Municipality garden neighborhood when supplying El Saha and Kroum Neighborhoods and supply it together with El Bayader neighborhood being the smaller neighborhood with the lower demand					
	Disconnect Kroum area when supplying Bayader Neighborhood					
	Install district meters including manholes construction at various locations on the network in order to allow future control and monitoring of water consumption and losses.					
Second step - short term	Conduct leak detection campaigns in order to detect additional invisible leakages					
solution	Re-calibrate the network after first intervention in order to evaluate the obtained results and design further interventions					
30141011	Evaluate the first intervention outcome and re-evaluate the supply of Municipality garden neighborhood together with El Bayader					
	Construct a new network for the whole locality with an adequate design taking into consideration the actual and future needs					
Long torm strategy to be	Disconnect illegal connection / subscribe all connected population					
Long term strategy to be adopted by the BWE	Supply the Municipality neighborhood by The Municipality garden well following the equipping of The garden Well					
	Improve the water quantity at source level in order to meet all population needs					
	Install water meters at house connections in order to control and monitor the water consumption, leakages and illegal connections					

Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri

The hydraulic engineer proceeded with the design and preparation of Bill of Quantities for the following:

- Repair of existing valves
- Existing manholes rehabilitation requirements
- Leakages repairs
- Separating the existing network into DMAs
- Installation of mechanical district flowmeters at **7** locations including fittings, accessories and manholes

Works have been implemented by a Contractor with the supervision of the Engineer and BWE staff and with the support from the Implementing Partner.

Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri

Following the works implementation, the engineer proceeded with the monitoring and analysis of the water consumption:

		Consumption per zone							
Flow meters		Zone 1 to 3	Zone 2 (Madrase)	Zone 4 (Seha)	Zone 5 (Bahsoun)	Zone 3 to 6 (Montazah)	Zone 6 to 7 (Kouroum)	Zone 7 (Bayader)	
30-10-23	30-10-23 13:30	-8	2	0	0	443	667	0	
31-10-23	31-10-23 7:30	-57	0	0	0	262	708	430	
01-11-23	01-11-23 7:43	-122	0	1138	325	17	3	0	
02-11-23	02-11-23 7:52	53	851	3	0	460	790	0	
03-11-23	03-11-23 7:46	-117	0	0	0	329	634	557	
04-11-23	04-11-23 9:40	-75	667	923	242	-19	0	19	
05-11-23	05-11-23 7:15	-11	0	0	0	601	929	0	
06-11-23	06-11-23 7:14	-30	0	0	0	242	733	425	
07-11-23	07-11-23 8:03	-84	921	1048	307	-9	9	0	
08-11-23	08-11-23 7:28	654	0	0	0	-383	383	0	
08-11-23	08-11-23 17:07	-669	0	0	0	1032	558	0	
09-11-23	09-11-23 7:48	-24	0	0	0	237	722	401	
10-11-23	10-11-23 7:22	-117	955	1144	305	10	-15	15	

Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri

Consumption per zone

Ali Nahri								
Subscribers	Zone	House counting scenario	House counting per zone		Average distribution (summer)	Distribution pattern	Distribution per day (m³/day)	per household (m ³)
1273	Saha , Bahsoun	1250	Saha	1175	1250	24 hrs each 3 days	420	0.36
			Bahsoun	75	315	24 hrs each 3 days	105	1.40
	Bayader, Montazah, Farms	720	Bayader	600	1050	24 hrs each 3 days	350	0.58
			Montazah	85	530	24 hrs each 2 days	840	9.88
			Farms	35	108	24 hrs each 3 days	36	1.03
	Kroum, Montazah School	1100	Kroum	900	1500	24 hrs each 2 days	750	0.83
			Montazah	85	620	24 hrs each 2 days	840	9.88
			School	115	980	24 hrs each 3 days	327	2.84
	Haush El Ghanam	930		930	N/A	Everyday		

Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri

Despite the technical intervention on the Ali en Nahri network where leakages have been reduced, people were still complaining for the following reasons:

- People in the same neighborhood receive water in different quantities
- Existing farms consuming a high quantity of water without being subscribed or with one standard subscription
- Illegal connections

A campaign for water conservation is needed in order to raise awareness about water consumption, calibrate house connections, remove illegal connections and aware people about subscription to BWE and payment.

Calibration of Hydraulic Model, Leak detection campaign and Monitoring of water consumption – Ali el Nahri Community Engagement

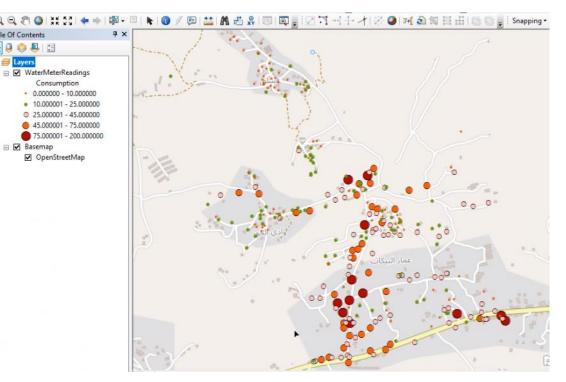
Water campaigns are conducted jointly by Social, engineering staff and technicians.

- Illegal disconnection / subscriptions, removing violations
- Community Perception Research (CPR)
- Water conservation awareness campaigns
- WaterWise sessions (targeted audience, specific modules)
- Project Progress community meetings
- Subscription and Collection Campaigns
- Complaints Mechanism & Conflict Resolutions
- Communication & Visibility Inaugurations, Events, etc.

EL-SICR IMPLEMENTATION IN QOBAYAT

CASE STUDIES

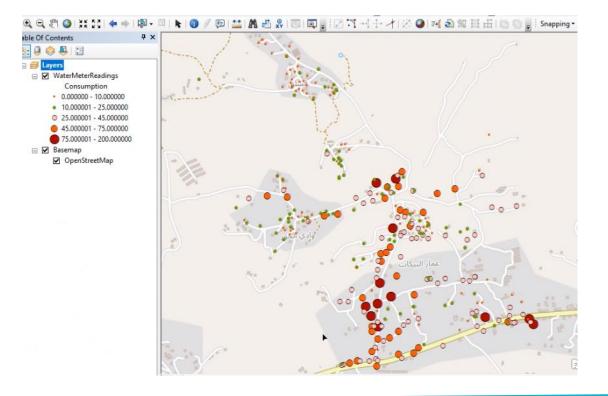
EMARET EL BAYKET, MACHTA HAMMOUD & QOBAYAT PUMPING STATIONS



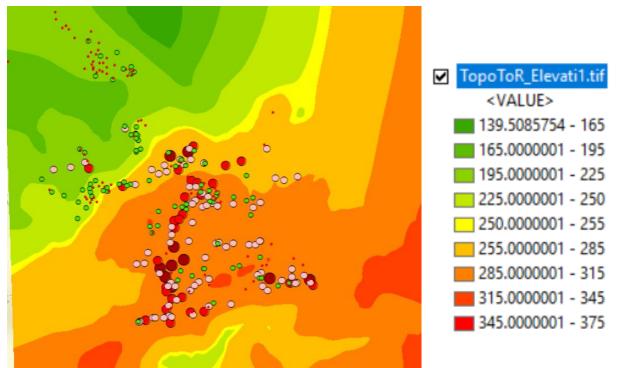
Design and Implementation for Service Improvement in Amaret el Bayket and Machta Hammoud

Water System in Amaret el Bayket vs Machta Hammoud

- Both localities have available water resources
- Both localities suffer from unfair water distribution
- There is water meters at Amaret el Bayket house connections while no water meters at Machta Hammoud house connections
- The main reasons for the unfair distribution are:
 - The geographical nature of the localities
 - Discontinued distribution pattern
 - The un-calibrated house connections allowing for high consumption in limited time



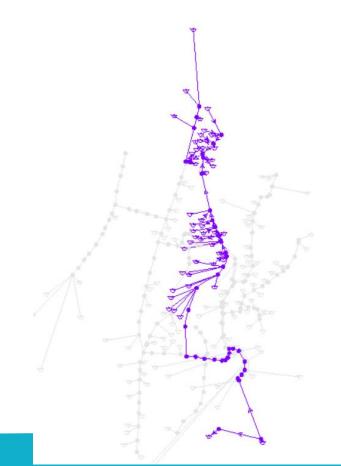
Water meter readings in Amaret El Bayket



Design and Implementation for Service Improvement in Amaret el Bayket and Machta Hammoud

Water meter readings in Amaret El Bayket

Water meter readings in Amaret El Bayket and Elevation



Design and Implementation for Service Improvement in Amaret el Bayket and Machta Hammoud

Analysis of the Water System in Machta Hammoud

- The house connections were simulated as open demand reservoirs
- The result showed high consumption (high flow) draining the water source quickly and causing the pressure to drop at elevated locations
- The analysis of the situation clearly showed the importance of the calibration of the house connections in order to reduce the water consumption, allow for a better pressure and fair distribution to all the neighborhoods

Design and Implementation for Service Improvement for Qobayat PS

Qobayat Pumping Station suffers from:

- Continuous pumps defects causing interruption in the supply and repetitive interventions and urgent repairs with high costs
- The old-aged transmission pipelines from the PS to the reservoirs were subject to continuous leakages
- The **old pipelines were replaced** in order to reduce further defects
- The **installation of water hammer systems** and new transmission pipelines was found crucial for reducing defects and maintenance costs in both the short and long term. These measures also help protect the entire water system and enhance the quantity of water supplied.

