

Decentralized Wastewater Treatment Systems Lessons Learned Workshop

Workshop Outline

- 1 Background and History
- 2 Purpose and Objectives
- Phases of implementation: challenges and lessons learned
- 4 Case Study: DEWATS for institutions by SI
- 7 Wrap up and conclusions

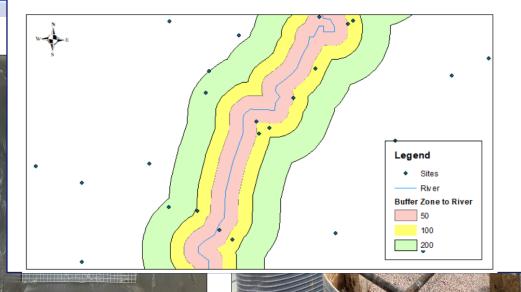
Background and History

Sanitation Management in ITS

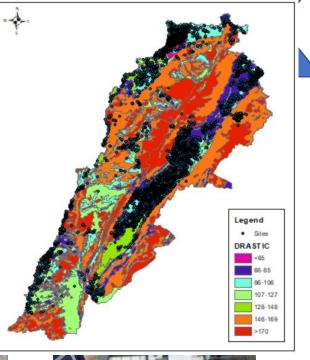
Background and History

The Sanitation Action Plan

Drimary


Pollution production

- Integrating greywater and blackwater
- Ranking the sites based on the level of pollution produced and mismanaged


<u>Secondary | Tertiary</u>

Distance to rivers

Done using a GIS exercise to categorize sites into buffer zones from rivers: 50m, 100m, 200m, and >200m.

Environment

Background and History

MoEW ban on DEWATS

The quality of effluents (COD/BOD) not respecting limits

Possible diversion of Aid in the ITSs

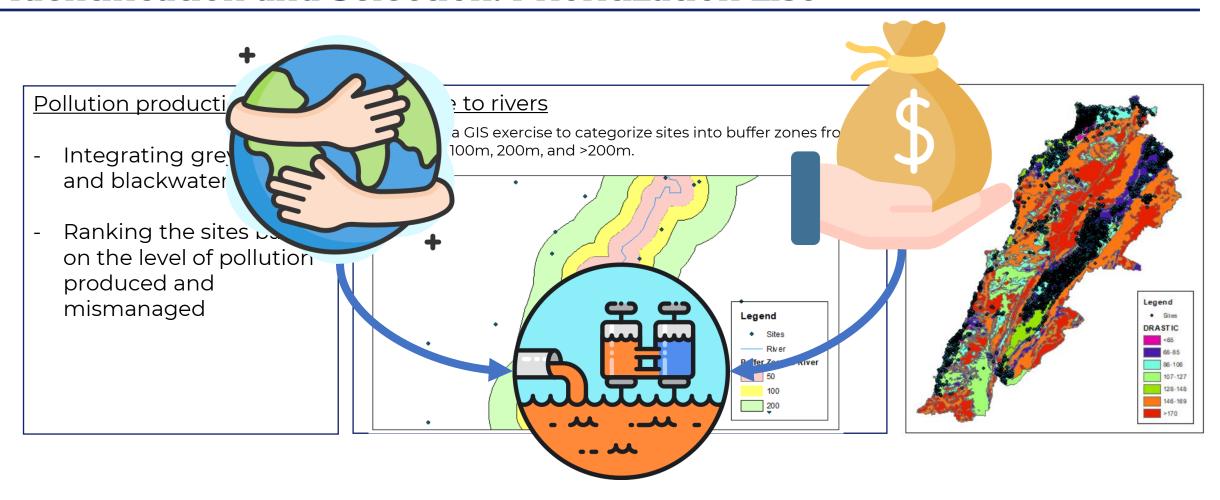
Purpose and Objectives

Identifying good practices, limitations and challenges

Developing recommendations and improvement of DEWATS

Enhancing knowledge sharing and organizational learning about Decentralized Treatment systems.

Documenting lessons learned for future contextualized installation.



Identification and Selection: Prioritization List

Identification and Selection: Preliminary Assessment

Checklist

- Site accessibility
- Users
- Existing infrastructure
- Available space
- Land gradient
- Soil type
- Depth of water table
- Options for disposal

Identification and Selection: Stakeholders' Analysis

Identification and Selection

Challenges and root causes	Lessons learned and recommendations
Finding sites that satisfy all the technical requirements with acceptance from the landowners	Assess as many sites as possible and go for alternative sanitation solutions if DEWATS is not feasible
Sites with multiple landowners	Get approval from each landowner through an MoU. Otherwise, let go.

Detailed Technical Assessment

Detailed Technical Assessment

Challenges and root causes	Lessons learned and recommendations
Lack of resources for geotechnical and hydraulic tests.	Collect information and history of other nearby infrastructural works to get an idea about type of soil and water table.
Population figures changing.	Try to select sites with stable communities and consider designing with a population growth factor.

Design

Primary Treatment
Anaerobic Baffled
Reactor (ABR)

Secondary Treatment

- Anaerobic filter (AnF)
- Biological Aerated Filter (BAF)

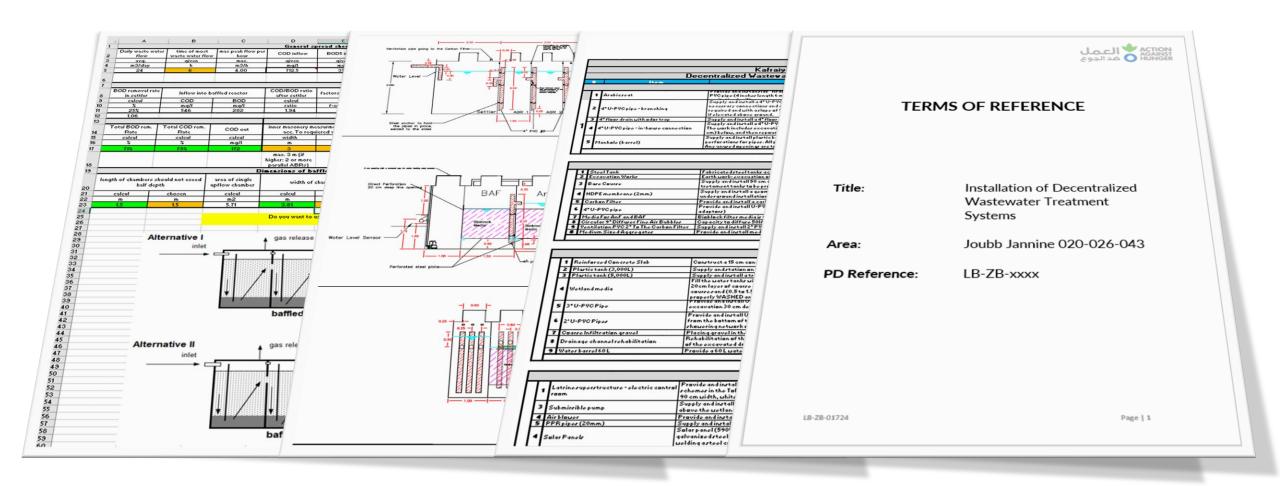
Tertiary Treatment

- Slow Sand Filter (SSF)
- Vertical Constructed Wetland (VFCW)

Environment Limit Values

Materials Used

UPVC pipes for network


Plastic tanks for manholes

Steel for treatment unit

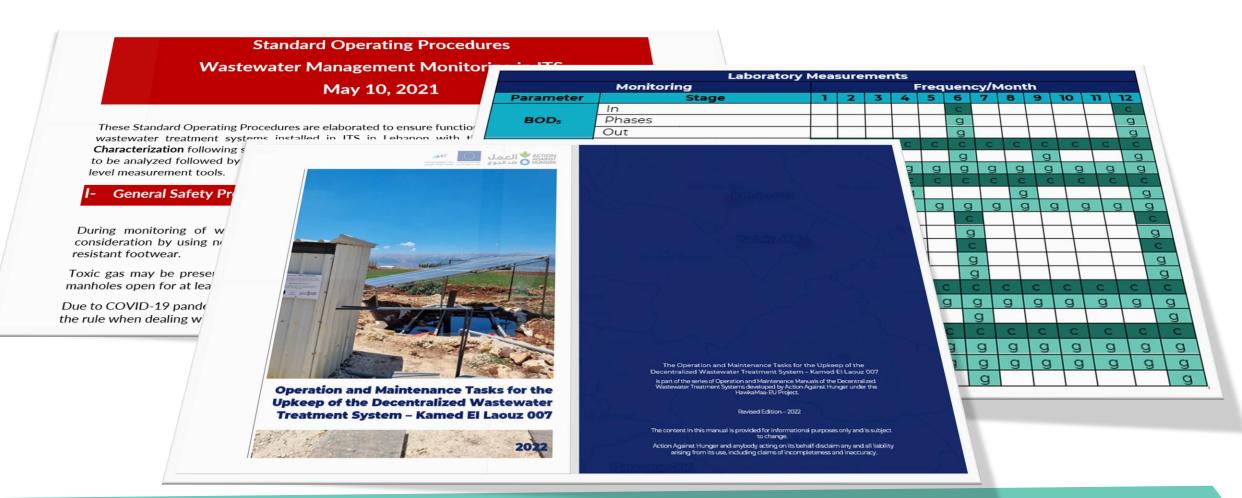
Documents Produced

Design

Challenges and root causes	Lessons learned and recommendations
Small space for implementation	Try different technologies and different iterations for the sizing of the system to fit the available area. You might need to include energy dependent technologies.
Lack of data	Ensure a comprehensive and detailed technical assessment of resources allow, or rely on history of infrastructural works in the area for preliminary knowledge

Procurement

Implementation



Implementation

Challenges and root causes	Lessons learned and recommendations
Unforeseen site conditions (high water table, rocky soil)	Risk management and prompt amendments
New or unanticipated landowners	Negotiation for approval. Otherwise, let go of the project to avoid tension (no harm approach)

Monitoring, Operation and Maintenance (O&M)

Monitoring, Operation and Maintenance (O&M)

Chemical Oxygen Demand (COD) (ELV limit: 125 mg/L)

Site	Main Manhole	Settler	ABR	AnF	BAF	WTL	Treatment Efficiency
Kamed El Laouz 007	2,100	350	120	110	90	40	98%
Ghazze 012-060	435	170	110	100	90	80	82%
Kafraiya 002	530	650	125	115	70	40	92%
Kafraiya 006	195	120	60	50	<20	<20	95%
Qaraaoun 006	1,450	230	60	40	<20	<20	99%

Implementation

Challenges and root causes	Lessons learned and recommendations
Breakage or blockage of pipes or manholes.	Provision of tools and capacity building for community to do minor rehab.
Faults or vandalism of electric components.	Secure the system and have an emergency plan.
Uncompliant treatment efficiencies.	Optimization of the treatment stages or addition of a treatment stage.

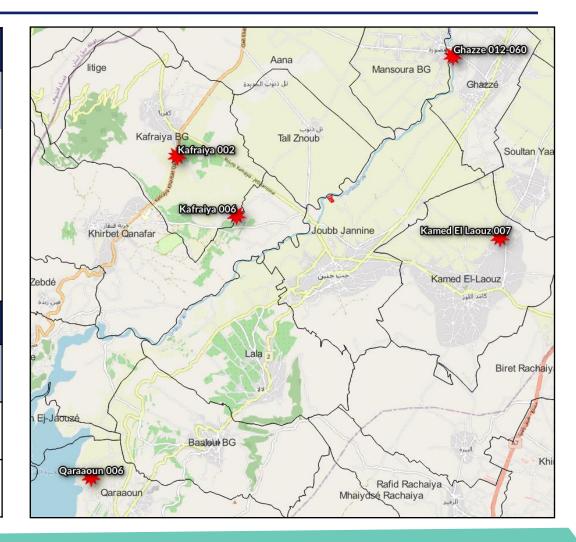
Community Engagement

Understandin g Community Needs

> Collaborative decision making

Awareness Sessions

Long-term Sustainability



DEWATS for ITS by ACF

Batch I										
Site	Shelters	Ind.	Design	Completion						
Kafraiya 006	10	70	Settler - ABR - AnF - BAF - WTL	Apr 2022						
Kamed El Laouz 007	21	120	Settler - ABR - AnF - BAF - WTL	Feb 2022						
Qaraaoun 006	8	70	Settler – ABR – AnF – BAF - WTL	Apr 2022						

Batch II

Site	Shelters	Ind.	Design	Completion
Ghazze 012-060	40	375	Settler - ABR - AnF - WTL	Aug 2022
Kafraiya 002	10	50	Settler - ABR - AnF - BAF - WTL	May 2022

09/07/2024 HawkaMaa-EU

tor every child SOLIDARITÉS INTERNATIONAL

DEWATS in MINJEZ Municipality

This project considered the 1st WWTS installed at communal level out 5 installed under different fund (UNICEF, LHF, EU-MADAD)

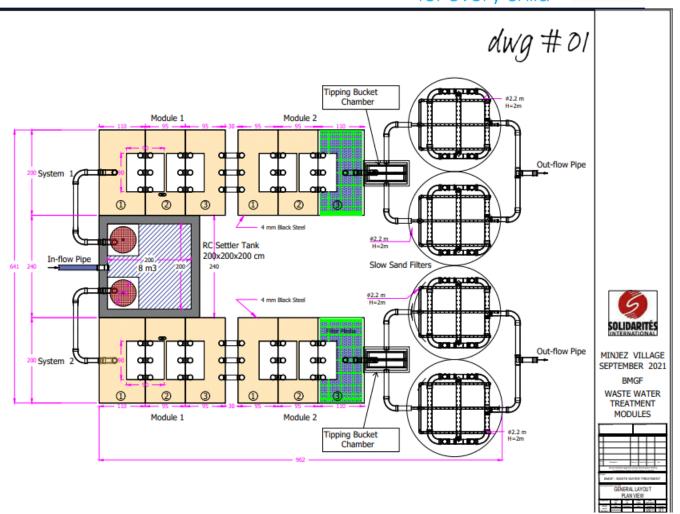
Target Population: 50 individuals

Sewer's connection pre-intervention: Connection by network constructed by the municipality and direct to Valley with no treatment.

Threats: Underground water, bad smell, health, plants

Consumption: 150-200-liter/p/d

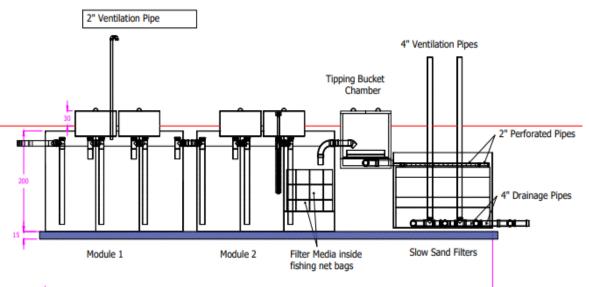
Place before the WWTS installments

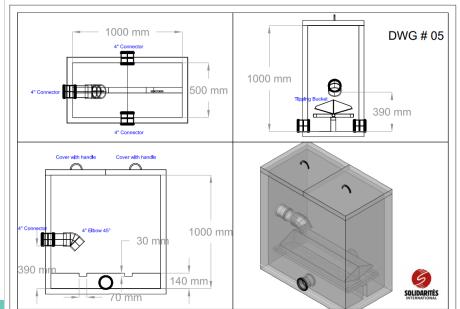

unicef Solidarités for every child solidarités International

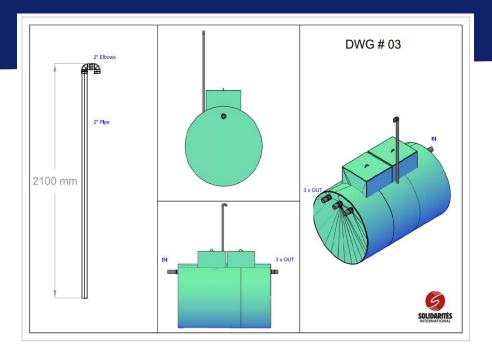
DEWATS in MINJEZ Municipality

WWT technologies installed / above or underground | **1st Step**: Anaerobic Baffle Reactor / Underground

WWT technologies installed / above or underground | 2nd Step: Anaerobic Filter / Underground


WWT technologies installed / above or underground | **3rd Step**: Sand Filter/Underground





HawkaMaa - EU Funded by the European Union بتمويل من الاتحاد الأوروبي حوكماء - الإتحاد الأوروبي

unicef for every child

DEWATS in MINJEZ Municipality

Prior to the intervention

Post-intervention

DEWATS in MINJEZ Municipality

Result of testing the influent vs effluent

Governorate	site	#	Black / Grey / Black & grey	Secondary treatment	Tertiary treatment		рН	TSS	COD	Removal rate on the entire treatment chain	BOD5	Removal rate on the entire treatment chain
							5-9	60mg/l	125mg/l		25mg/l	
Akkar	Menjez -Leb		black & grey	ey ABR AF	SSF	in	7.3	850	300		130	
ARRAI	Wenjez -Leb		black & grey		331	out	7.3	760	50	83%	15	88%
Akkar	Menjez - Leb		black & grey	ABR AF	SSF	in	7.3	850	300		130	
AKKai	ivierijez - Leb		Diack & giey	ADN AF	33F	out	7.2	750	50	83%	10	92%

Governorate	site #	Black / Grey / Black & grey	Secondary treatment	Tertiary treatment		[NO3]	[NO2]	TKN	TN 30mg/l	TP	TC 2000	FC 100
1									3Umg/I		2000	100
Akkar	Menjez -Leb	black & grey	ABR AF	SSF	in	<0.1	<0.1	120		15	tntbc	tnbc
ARRAI	Wenjez -Leb	black & giey	ABILAI	331	out	<0.1	<0.1	30		10	tnbc	0
Akkar	Menjez - Leb	black & grov	ABR AF	SSF	in	<0.1	<0.1	120		15	tntbc	tnbc
		black & grey			out	<0.1	<0.1	20		8	tnbc	150000

WWTS in Salamtk PHC

Lebanon Humanitarian Fund

WWT technologies installed / above or underground | 1st Step: Anaerobic Baffle Reactor / Underground

WWT technologies installed / above or underground | 2nd Step: **Anaerobic Filter / Underground**

WWT technologies installed / above or underground | 3rd Step: **Biological Aerated Filter / Underground**

WWT technologies installed / above or underground | 4th Step: Sand Filter / Above Ground/ underground

Challenges and Lessons Learned

Challenges:

- 1. Manholes installed by municipality were mixing black/grey water and rainwater.
- 2. A consistent flow of water
- 3. Difficult to persuade the owner of the system since it requires a large amount of land (20 m2) for project in PHC, vaccination center or others

Lessons Learned for communal level projects:

- 1. The selection of the system and municipality should take into account the representative's willingness to manage the project and recognize its importance
- 2. Capacity training and inclusion of representatives in all implementation phases ensure their understanding and ability to maintain the system.
- **3. For other project** Conducting focus group discussions involving beneficiaries, the owner, municipality, and representatives from the surrounding community is essential. This aims to elucidate the system's benefits and thoroughly discuss every aspect of the project before commencement.
- **4. For other project** Ensuring community approval in the vicinity is crucial to prevent tensions, particularly in the case of solar system installation.
- **5. For other project**: Due to the potential risk of theft, especially targeting items like solar panels, batteries, inverters, and electrical pumps, precautions should be taken, security/risk assessment should be conducted.
- **6. For other project:** For the discharge of purified water, it is imperative to verify the feasibility of releasing it through outlets such as rivers, water channels, seas, etc.

Successes and Failures

Successes:

- Remarkable success has been achieved in purifying wastewater to the designed value, meeting acceptable standards for environmentally safe discharge. While the removal rate on the entire treatment chain is 83-92% comparison of the inlet and outlet result.
- 2. Successful community engagement efforts by SI and municipality facilitate the implementation and monitoring
- 3. Demonstrating cost-effectiveness
- 4. System working on gravity, no need for electricity.
- 5. Ensuring continuous and thorough follow-up, along with regular cleaning, is essential for system maintenance and optimal performance.

Failures:

1. Managing fluctuations in the number of users/beneficiaries is critical, as the system's capacity is designed for a specific user base. Any increase may require an additional system, while a decrease could impact the quality of the outlet water.

Thank you for participating!

